Изобретение относится к области металлургии, в частности к аморфным термомагнитным сплавам, получаемым в виде тончайшей ленты методом закалки из расплава литьем плоского потока расплава на поверхность охлаждающего тела.
Известны кристаллические термомагнитные сплавы [1] на основе железа и никеля в виде лент и листов, получаемые традиционными металлургическими способами. В зависимости от состава они могут применяться в температурной области от минус 20 до плюс 35°С в устройствах (реле, шунты и т.д.), работа которых основана на температурной зависимости намагниченности в заданном магнитном поле.
Недостатком указанных сплавов является то, что переход из ферромагнитного состояния в парамагнитное и обратно происходит в большом интервале температур, тогда как для некоторого вида термомагнитных устройств наиболее предпочтительным температурным интервалом перехода является интервал температур от минус 8 до плюс 40°С.
Другим недостатком указанных сплавов является низкая магнитная проницаемость, в результате чего термомагнитная чувствительность датчиков к изменению температуры незначительна.
Следующим недостатком известных сплавов является невозможность получения тонких лент или пленок.
Наиболее близким материалом для термомагнитного применения, имеющим температуру перехода из ферромагнитного состояния в парамагнитное и обратно в интервале температур от минус 8 до плюс 35°С, является принятый заявителем в качестве прототипа элемент периодической системы таблицы Д.И. Менделеева номер 64 гадолиний Gd [2]. Температура Кюри указанного материала находится в пределах от 0 до 30°С в зависимости от чистоты по примесям.
К недостаткам данного материала следует отнести невысокую относительную магнитную проницаемость (30-50), неуправляемость значением температуры Кюри, а также то, что его переход из ферромагнитного состояния в парамагнитное и обратно происходит в большом интервале температур (7-10°С).
Гадолиний не производится в виде тонкой ленты, что иногда необходимо для изготовления термомагнитных датчиков. Кроме того, гадолиний является редкоземельным элементом, что значительно повышает стоимость его добычи. Аморфные термомагнитные сплавы на основе гадолиния неизвестны.
Техническим результатом предложенного изобретения является устранение недостатков прототипа, а именно получение тонкой ленты, выполненной из аморфного термомагнитного материала, с высокой относительной магнитной проницаемостью и узким температурным диапазоном перехода из ферромагнитного в парамагнитное состояние и обратно, причем температура перехода должна управляться химическим составом сплава и находиться в интервале от минус 8 до плюс 40°С.
Технический результат достигается тем, что тонкая лента выполнена из аморфного термомагнитного материала и получена разливкой плоского потока на поверхность охлаждающего тела, при этом она имеет температуру Кюри от минус 8°С до плюс 40°С и материал ленты имеет следующую композиционную формулу CoосноваСrxFеbSiсВе, при следующем соотношении компонентов, ат.%:
5<b≤5,4,
10≤c≤12,
12≤е≤14,
х=5,7-0,0267 Тc,
где Тc - заданная температура Кюри сплава, °С;
0,0267 - экспериментальная константа.
Предлагаемый качественный и количественный состав обеспечивает получение аморфного термомагнитного материала с высокой относительной магнитной проницаемостью и узким температурным диапазоном перехода из ферромагнитного в парамагнитное состояние и обратно, а также возможность управления температурой перехода химическим составом сплава, температура перехода которого находится в интервале от минус 8 до плюс 40°С (результаты лабораторных испытаний представлены в таблицах 1 и 2).
Как показали эксперименты, варьирование содержания хрома в интервале от 4,4 до 5,7 ат.% в аморфном сплаве на кобальтовой основе, легированном бором, кремнием и железом, приводит к ферромагнитному эффекту (см. в табл.1 параметры относительной магнитной проницаемости). В результате этого температуру Кюри можно уменьшить до температур менее 0°С. При этом магнитная проницаемость материала остается на очень высоком уровне (от 300000 до 750000). Аморфное состояние сплава позволяет, имея максимально возможную однородность материала, получить разницу температур магнитного перехода от 1 до 3°С, т.е. ΔT*=T1-T2, где T1 - температура начала роста индуктивности, °С; Т2 - температура Кюри, °С, что, в принципе, находится в пределах точности измерения температуры. Изменение магнитной проницаемости заявляемого сплава при магнитном переходе значительно превосходит изменение магнитной проницаемости сплавов по указанным выше аналогам.
Заявляемое техническое решение осуществляется следующим образом.
Изготавливают аморфный термомагнитный сплав одного из следующих составов CoосноваCrxFebSicBе при следующем соотношении компонентов, ат %:
5<b≤5,4,
10≤c≤12,
12≤e≤14,
x=5,7-0,0267 Тc,
где Тc - заданная температура Кюри сплава, °С;
0,0267 - экспериментальная константа.
Для получения заданного состава используют шихтовые материалы по:
ГОСТ 123-98 Кобальт металлический. Технические условия;
ГОСТ 2169-69 Кремний кристаллический. Технические условия;
ГОСТ 5905-79 Хром металлический. Технические условия;
ТУ 14-1-2033-77 Железо чистое марок 008ЖР или железо конверторное. Технические условия;
ТУ 14-5-76 Хром электролитический. Технические условия;
ТУ 14-5-96-84 Ферробор марки ФБ18(л). Технические условия;
ТУ 113-12-11.106-88 Бор кристаллический (спеченный). Технические условия.
Для получения предлагаемого аморфного термомагнитного материала производят выплавку в вакуумной печи одного из следующих сплавов CoосноваCrxFebSicBe при следующем соотношении компонентов, ат %: 5<b≤5,4, 10≤с≤12, 12≤е≤14, х=5,7-0,0267
Тc; с массой одной плавки 500 кг. Слиток измельчают, перемешивают, делят на порции-партии и порцию материала расплавляют в агрегате разливки ленты. Изготавливают тонкие аморфные ленты из предложенного термомагнитного сплава составов, указанных в табл.1, определяют температуру Кюри, °С, образцов ленты. Образцы для испытаний представляют собой витые кольцевые сердечники из аморфных лент предложенного термомагнитного сплава. Для сравнения изготавливают кольцевые образцы из монолитного гадолиния и определяют температуру Кюри, °С, его образцов. В качестве охлаждающей среды используют лед. Для нагрева применяют электропечь сопротивления.
Для испытаний температуры Кюри применяется следующий метод: образец помещается в пластмассовый корпус. В зазор между корпусом и образцом помещается измерительный спай термопары типа ТХА. Корпус закрывается крышкой. Для определения магнитного перехода измерительная обмотка образца присоединяется к измерителю индуктивности Е7-14. Свободные концы термопары присоединяются к цифровому регистрирующему прибору с дискретностью измерения температуры 1°С.
Определение изменения индуктивности при нагревании образца
Вначале образец с термопарой и обмоткой помещался в емкость со льдом с температурой до минус 30°С. Производилось определение изменения индуктивности при нагревании образца в корпусе от температуры минус 30°С до температуры 41°С. За счет того, что испытуемый материал находился в малотеплопроводном корпусе, нагрев происходил медленно и, измеряя индуктивность, по цифровому регистрирующему прибору можно было очень точно определить температуру начала и конца лавинообразного уменьшения магнитной проницаемости и лавинообразного уменьшения индуктивности при росте температуры образца. После перехода материала из ферромагнитного в парамагнитное состояние производилась выдержка с охлаждением образца до температуры от 2 до 5°С выше точки перехода.
Определение изменения индуктивности при охлаждении образца
Предварительно нагретый до температуры 41°С образец с термопарой и обмоткой помещался в емкость со льдом с температурой до минус 30°С и производилось определение изменения индуктивности и магнитной проницаемости при охлаждении в корпусе образца от температуры 41°С до температуры минус 30°С. За счет того, что испытуемый материал находился в малотеплопроводном корпусе, охлаждение происходило медленно и, измеряя индуктивность, по цифровому регистрирующему прибору можно было точно определить температуру начала и конца лавинообразного увеличения магнитной проницаемости и лавинообразного увеличения индуктивности при уменьшении температуры образца. После перехода материала из парамагнитного в ферромагнитное состояние производилась выдержка с охлаждением образца до температуры от 2 до 5°С ниже точки перехода.
Температурой Кюри считалась точка, при которой величина индуктивности стабилизировалась.
Диапазоном изменения ΔТ*, °С, считалась разница между температурой начала и окончания изменения индуктивности при нагреве и охлаждении: T1-Т2, °С; T1, °C - температура начала роста индуктивности; Т2, °С - температура Кюри, °С.
Состав сплава определяли методом фотоэлектрического спектрального анализа на установке ДФС-51.
Относительную магнитную проницаемость определяли по ГОСТ 8.377[3].
На примере образца 4 содержание хрома, установленное опытным путем, равно 4,4 ат.%, что совпадает с расчетным результатам (4,60) в пределах точности анализа. Лабораторные исследования изменений индуктивности при нагревании и охлаждении опытных образцов предложенного аморфного термомагнитного материала и образца гадолиний Gd (по прототипу) представлены на графиках на фиг.1-3.
Лабораторные испытания предлагаемого аморфного термомагнитного материала и образца по прототипу иллюстрируются графиками, представленными на фиг.1-3.
На фиг.1 представлен график изменений индуктивности при нагревании (охлаждении) опытного образца предложенного аморфного термомагнитного материала: CoосноваCrxFebSicBе при следующем соотношении компонентов, ат %: х=4,41; b=3,4; c=11,6; e=13,7; Co - остальное. Температура Кюри, °С=+24; ΔT*=T1-T2, °C=1.
Магнитная проницаемость 700000. Индуктивность катушки Lк, мкГн=1,6. Индуктивность катушки Lк со слитком, мкГн=1,70 (24°С).
На фиг.2 представлен график изменений индуктивности при нагревании (охлаждении) опытного образца слитка гадолиния Gd (прототип). Температура Кюри, °С=+24; ΔT*=T1-T2, °C=7°C. Магнитная индукция Вт, Тл=0,025.
На фиг.3 представлен график изменений магнитной проницаемости при нагревании (охлаждении) опытного образца слитка гадолиния Gd (прототип). Температура Кюри, °С=+24; ΔT*=T1-T2, °C=8°C. Магнитная проницаемость 30-50.
Пример 1 конкретного осуществления
Получали аморфный термомагнитный материал: CoосноваCrxFebSicBe при следующем соотношении компонентов, ат.%: х=5,70; b=3,4; c=11,6; e=13,7; Co - остальное.
Температура Кюри, °С=-8. Температура перехода ΔT*=T1-T2, °C=1.
Относительная магнитная проницаемость = 750000.
Пример 2 конкретного осуществления
Получали аморфный термомагнитный материал: CoосноваCrxFebSicBe при следующем соотношении компонентов, ат.%: x=4,12; b=5,4; c=10,4; e=12,7; Co - остальное. Температура Кюри, °С=+40; ΔT*=T1-T2, °C=3.
Относительная магнитная проницаемость=300000.
Пример 3 конкретного осуществления
Получали аморфный термомагнитный материал: CoосноваCrxFebSicBe при следующем соотношении компонентов, ат.%: x=5,16; b=3,7; c=10,4; e=13,7; Co - остальное. Температура Кюри, °С=+1; ΔT*=T1-T2, °C=3.
Относительная магнитная проницаемость=500000.
Источники информации
1. Прецизионные сплавы. Справ. изд. под редакцией д.т.н., проф. Б.В.Молотилова. 2-е изд., переработ. и дополн. - М.: Металлургия, 1983. 439 с., стр.137-144.
2. Свойства элементов: Справ. изд. / Под ред. Дрица М.Е. М.: Металлургия, 1985, 672 с., стр.572-575.
3. ГОСТ 3.877-80 Материалы магнитомягкие. Методики выполнения измерений при определении статических магнитных характеристик.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛЕВЫХ И ТЕМПЕРАТУРНЫХ ЗАВИСИМОСТЕЙ ВЕЛИЧИНЫ АДИАБАТИЧЕСКОГО ИЗМЕНЕНИЯ ТЕМПЕРАТУРЫ С ПОМОЩЬЮ УНИВЕРСАЛЬНОЙ КРИВОЙ | 2009 |
|
RU2442975C2 |
ЭЛЕКТРОХИМИЧЕСКАЯ МАГНИТОТЕПЛОВАЯ ЭНЕРГОГЕНЕРИРУЮЩАЯ СИСТЕМА | 2002 |
|
RU2210839C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЧКИ КЮРИ МЕТАЛЛИЧЕСКИХ ВЫСОКОТЕМПЕРАТУРНЫХ ФЕРРОМАГНИТНЫХ СПЛАВОВ | 2011 |
|
RU2478935C1 |
УСТРОЙСТВО ВИЗУАЛИЗАЦИИ ТЕПЛОПРОВОДНОСТИ ФЕРРОМАГНЕТИКОВ | 2007 |
|
RU2359336C1 |
Способ определения температурыКюри | 1986 |
|
SU1318948A1 |
СПОСОБ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2012 |
|
RU2542601C2 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕПЛОПРОВОДНОСТИ ФЕРРОМАТЕРИАЛОВ | 2006 |
|
RU2324925C1 |
ТРАНСФОРМАТОР | 1992 |
|
RU2041513C1 |
АМОРФНЫЙ СПЛАВ С ВЫСОКОЙ НАЧАЛЬНОЙ МАГНИТНОЙ ПРОНИЦАЕМОСТЬЮ | 1991 |
|
RU2009246C1 |
АМОРФНЫЙ МАГНИТОМЯГКИЙ СПЛАВ НА ОСНОВЕ КОБАЛЬТА | 2007 |
|
RU2354734C2 |
Изобретение относится к области металлургии, в частности к тонким лентам, выполненным из аморфного термомагнитного материала методом закалки из расплава литьем плоского потока расплава на поверхность охлаждающего тела. Тонкая лента выполнена из аморфного термомагнитного материала и имеет композиционную формулу CoосноваCrxFebSicBe при следующем соотношении компонентов, ат.%: 5<b≤5,4, 10≤с≤12, 12≤е≤14, х=5,7-0,0267 Тc, где Тc - заданная температура Кюри сплава, °С, 0,0267 - экспериментальная константа. Полученные ленты обладают высокой относительной магнитной проницаемостью и узким температурным диапазоном перехода из ферромагнитного в парамагнитное состояние и обратно. 1 табл., 3 ил.
Тонкая лента, выполненная из аморфного термомагнитного материала и полученная разливкой плоского потока на поверхность охлаждающего тела, отличающаяся тем, что она имеет температуру Кюри от минус 8°С до плюс 40°С и материал ленты имеет следующую композиционную формулу CoосноваCrxFebSicBe при следующем соотношении компонентов, ат.%:
5<b≤5,4,
10≤с≤12,
12≤е≤14,
х=5,7-0,0267 Тc,
где Тc - заданная температура Кюри сплава, °С;
0,0267 - экспериментальная константа.
МАГНИТОМЯГКИЙ АМОРФНЫЙ СПЛАВ | 1996 |
|
RU2098505C1 |
МАГНИТОПРОВОД | 1996 |
|
RU2115968C1 |
МАГНИТНЫЙ СПЛАВ НА ОСНОВЕ КОБАЛЬТА И СПОСОБ ПРОИЗВОДСТВА ЛЕНТЫ ИЗ НЕГО | 1992 |
|
RU2009249C1 |
ЛЕНТОЧНЫЙ СЕРДЕЧНИК ДЛЯ РАБОТЫ В СЛАБЫХ МАГНИТНЫХ ПОЛЯХ И СПОСОБ ЕГО ПРОИЗВОДСТВА | 1992 |
|
RU2009248C1 |
Устройство для сортировки каменного угля | 1921 |
|
SU61A1 |
Авторы
Даты
2010-03-10—Публикация
2008-04-14—Подача