СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ Российский патент 2010 года по МПК H01F1/28 H01F1/44 

Описание патента на изобретение RU2388091C1

Изобретение относится к области получения магнитных жидкостей, а также к области синтеза основного компонента магнитной жидкости феррофазы (высокодисперсного магнетита) из отхода металлургического производства и сульфата железа - отхода производства титановых белил.

Магнитная жидкость - устойчивая коллоидная система высокодисперсных частиц магнитного материала (ферро- или ферримагнитных веществ), стабилизированного поверхностно-активными веществами в жидкости-носителе, которая способна взаимодействовать с магнитным полем и во многих отношениях ведет себя как однородная жидкость.

Магнитные жидкости, благодаря необычному сочетанию свойств магнетиков, жидкостей и коллоидных растворов, являются перспективным материалом и находят применение в различных областях техники: при создании магнитно-жидкостных уплотнений в химической промышленности, в качестве магнитных смазок, в процессах магнитного обогащения немагнитных материалов, в биологии и медицине.

Получение магнитных жидкостей состоит из двух основных операций.

1. Получение высокодисперсных частиц магнетика.

2. Стабилизация частиц магнетика в жидкости-носителе с использованием диспергирующего вещества, предотвращающего агрегирование частиц магнетика в жидкости-носителе и обеспечивающего устойчивость магнитной жидкости.

Первоначально в качестве феррофазы при получении магнитной жидкости использовали материалы, обладающие более высокими магнитными свойствами - высокодисперсное металлическое железо, кобальт, мягкие магнитные сплавы типа пермендюр [Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации. - В кн.: Гидродинамика и теплофизика магнитных жидкостей. Тезисы докладов Всесоюзного симпозиума. Саласпилс, ин-т АН Латвийской ССР, 1980. - С.21-28; Черкасова О.Г., Петров В.И., Руденко Б.А. Рентгеноконтрастная ферромагнитная жидкость. - Формация. - 1986. - т.35, №3. - С.31-34; Физические свойства магнитных жидкостей: Сб. статей. - Сверловск, УНУ АН СССР, 1983. - 128 с.]. Однако при использовании чистых металлов возникает ряд технологических трудностей, связанных как с получением высокодисперсных частиц и их защитой от окисления, так и с их стабилизацией с последующим диспергированием в жидкости-носителе. Поэтому наряду с металлами в качестве феррофазы все чаще используется магнетит (окись-закись железа), который хотя и уступает металлам по магнитным характеристикам, но благодаря простоте получения высокодисперсных частиц, хорошей адсорбционной способности и химической устойчивости позволяет получать магнитные жидкости, которые превосходят по магнитным параметрам магнитные жидкости на металлах.

Известен способ получения магнитной жидкости, заключающийся в осаждении частиц магнетита из водных растворов солей Fe2+ и Fe3+ - избытком щелочи (NaOH и NH4OH) [Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации. - В кн.: Гидродинамика и теплофизика магнитных жидкостей. Тезисы докладов Всесоюзного симпозиума. Саласпилс, ин-т АН Латвийской ССР, 1980. - С.21-28]. Предпочтительными солями являются хлориды и сульфаты из-за их доступности и экономичности. Присутствие ионов других металлов - Mg2+, Cr3+, Ni2+, Сu2+ - не являются вредными, если их содержание невелико.

Осадок магнетита промывают деконтацией от избытка щелочи и удаления солей до достижения рН=7. Полученный магнетит обладает дисперсностью, легко стабилизируется и диспергируется. Магнитная жидкость получается добавлением к водной суспензии магнетита жидкости-носителя, в которой растворен стабилизатор - ПАВ. В качестве жидкости-носителя используется керосин, в качестве стабилизатора - олеиновая кислота. При хемосорбции олеиновой кислоты на поверхности частиц магнетита образуется адсорбционный слой. При этом происходит обезвоживание частиц магнетита и разделение фаз, то есть выделение магнетита из водной среды и его переход в среду жидкости-носителя.

Известен также [Ахалая М.Г., Кокиашвили М.С., Берия В.П. Перспективы применения магнитных жидкостей в биологии и медицине. - В кн.: Физические свойства магнитных жидкостей: - Сб. статей. - Свердловск, УНУ АН СССР, 1983. - С.115-120] способ получения магнитной жидкости, в котором синтез феррофазы осуществляется как в вышеуказанном способе, затем производится удаление воды из осадка последовательной промывкой его ацетоном, толуолом. Для получения магнитной жидкости в требуемой жидкости-носителе толуол сливают с осадка магнетита, влажный осадок переносят в фарфоровую ступню, добавляют к нему стабилизатор - олеиновую кислоту. Из полученной смеси толуол выпаривают нагреванием в ступне до 90-110°С при непрерывном растирании осадка. После испарения толуола смесь продолжают тщательно растирать при той же температуре. Полученную массу переносят с помощью требуемого количества дисперсионной среды в мельницу и гомогенизируют в стальной мельнице на 1/2 заполненной стальными шарами. Нужная степень пептизации достигается за 6-12 ч.

Описанные способы получения магнитной жидкости отличаются трудоемкостью и длительностью процессов.

Наиболее близкий к заявленному способ, описанный в патенте 1439031 - Великобритания, МПК: Н01F 1/36, В05D 7/00, С02В 9/09, выбранный нами за прототип.

Он состоит из следующих стадий.

1. Образование суспензий магнитных частиц коллоидного размера в воде.

2. Покрытие поверхности частиц адсорбированным слоем стабилизирующего вещества, которое имеет растворимую в воде форму.

3. Нагрев суспензии покрытых стабилизирующим веществом частиц до температуры, достаточной для разложения стабилизирующего вещества и превращения его в форму, не растворимую в воде.

4. Отделение от суспензии фракции, содержащей покрытые стабилизирующим веществом магнитные частицы. Отделенная фракция диспергируется в любой неводной жидкости, обладающей растворимостью для стабилизирующего вещества в его форме. Полученная магнитная жидкость представляет стабильную коллоидную суспензию магнитных частиц.

В описанном способе для получения высокодисперсных частиц магнетита был использован как источник соли Fe2+ травильный раствор сталеплавильного завода, имеющий следующий химический состав, %: Fеобщ - 99,98; Fe2+ - 98,07; Mn2+ - 0,41; Cr3+ - 0,008; Ni2+ - 0,015; Cu2+ - 0,013; свободная HCl - 30,2. При этом источником соли Fe3+ служил тот же травильный раствор, в котором FеСl3 был получен окислением Fе2+ перекисью водорода. Излишек перекиси водорода был удален из раствора кипячением.

Задачей настоящего изобретения является усовершенствование способа получения магнитных жидкостей с высокими магнитными характеристиками путем использования отхода металлургического производства как источника Fe3+ и сульфата железа - отхода производства титановых белил как источника Fe2 для получения высокодисперсной феррофазы.

Указанная задача достигается тем, что проведение процесса получения магнитной жидкости по предлагаемому способу исключает операцию окисления травильного раствора с целью получения Fe3+ перекисью водорода с последующим кипячением раствора для удаления излишка перекиси водорода. Предлагаемый способ предполагает вместо окисления травильного раствора использовать в качестве источника Fe 3+, имеющийся в больших количествах отход после очистки дымовых газов на металлургических заводах. Простое (без подогрева) растворение данного отхода в соляной кислоте обеспечит стабильное наличие одного из компонентов (FeCI3) для получения высокодисперсного магнетита, а источником второго компонента может явиться отход-сульфат железа, образующийся при получении титановых белил сернокислым способом.

Экономическая целесообразность предлагаемого способа состоит в следующем.

1. Предлагается использование в качестве сырья отхода производства.

2. Не потребуется затрат на окисление травильного раствора перекисью водорода и его последующего кипячения.

Процесс получения магнитной жидкости состоит из следующих операций.

1. Смешение в требуемом соотношении (Fe3+/Fe2+=3:2) растворов, содержащих трех- и двухвалентное железо.

2. Получение суспензии магнитных частиц коллоидного размера пептизацией смеси растворов добавлением гидроксида аммония 28%-ного.

3. Покрытие осажденных частиц в водной среде стабилизирующим веществом, образующим в избытке гидроксида аммония аммонийную соль, растворимую в воде.

4. Подогрев суспензии стабилизированных частиц для преобразования стабилизирующего вещества (разложение его аммонийной соли с образованием аммиачного газа) и превращение в нерастворимую в воде форму и отделение их от водной фазы.

5. Образование магнитной жидкости при смешении коагулянта с неводными жидкими носителями, которые обладают некоторой растворимостью по отношению к стабилизирующему веществу.

Пример 1

Отход после очистки дымовых газов металлургических заводов, высушенный при 105°С в течение 1 ч с влажностью 3,2%; содержание основного вещества (Fе2О3) - 55,7%; содержание нерастворимого в HCI остатка - 22,4%; рН водной вытяжки - 6,6; содержание водорастворимых солей - 2,2% растворяют в концентрированной соляной кислоте; после фильтрования раствора его смешивают с водным раствором сульфата железа - отхода производства титановых белил, содержащим массовую долю соединений железа в пересчете на Fе2O3 - 1,6%, на FeO - 22,4%, затем медленно добавляют 50 см3 28%-ного гидроксида аммония с одновременным перемешиванием для осаждения гидроксидов железа. Смесь подогревают до 95°С и добавляют 50 см3 керосина и 5 см3 олеиновой кислоты на 100 см3 суспензии (при интенсивном перемешивании). Затем продолжают подогрев и происходит отчетливое разделение водной и органической фаз. Водную фазу удаляют с помощью пипетки. Этим уменьшают время подогрева, а также ликвидируют большую часть хлорида аммония. Подогрев продолжают до тех пор, пока не истощится H2O и температура органической фазы не возрастет до 130°С.

Жидкость охлаждают до комнатной температуры и сливают в мензурку. Добавляют керосин до объема жидкости 55 см3, чем компенсируют потерю керосина во время подогрева. Свойства полученной магнитной жидкости представлены в таблице - МЖ1.

Пример 2

Проводится как пример 1, но исходными компонентами для получения магнитной феррофазы является травильный раствор и соль FеСl3·6Н2О. Свойства полученной магнитной жидкости представлены в таблице - МЖ2.

Пример 3

Проводится как пример 2, но объемная доля магнетита увеличена в 2 раза. Свойства полученной магнитной жидкости представлены в таблице - МЖ3.

Для сравнения в таблице представлены показатели магнитной жидкости из патента Великобритании №1439031 (пример 4) - МЖ4. Магнитная феррофаза получена осаждением избытка из смеси солей FеСl3·6Н2O и FeCl2·4H2O избытком гидроксида аммония.

Пример 5

Магнитная жидкость получена по примеру 1 патента Великобритании №1439031. Свойства полученной магнитной жидкости представлены в таблице - МЖ5.

Таблица Показатели магнитных жидкостей Показатели Магнитная жидкость MX1 МЖ2 МЖ3 МЖ4 МЖ5 Объемная доля магнетита, % 6,36 4,29 10,0 - 4,06 Плотность, кг/м3 985 972 1200 950 963 Вязкость, Па·с·103 4,819 3,334 7,8 - 3,065 Намагниченность насыщения, кА/м 17,70 12,15 25,0 10,09 11,17

Похожие патенты RU2388091C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2001
  • Макаров В.М.
  • Юсова А.П.
  • Шипилин А.М.
  • Мельников Г.М.
  • Калаева Сахиба Зияддин Кзы
RU2193251C2
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2008
  • Калаева Сахиба Зияддин Кзы
  • Макаров Владимир Михайлович
  • Шипилин Анатолий Михайлович
  • Захарова Ирина Николаевна
  • Ерехинская Анна Геннадьевна
  • Шипилин Михаил Анатольевич
RU2391729C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2001
  • Макаров В.М.
  • Юсова А.П.
  • Шипилин А.М.
  • Мельников Г.М.
  • Калаева Сахиба Зияддин Кзы
RU2182382C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2004
  • Калаева Сахиба Зияддин Кзы
  • Макаров Владимир Михайлович
  • Шипилин Анатолий Михайлович
  • Захарова Ирина Николаевна
  • Мельников Геннадий Михайлович
  • Дубов Андрей Юрьевич
RU2276420C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2010
  • Калаева Сахиба Зияддин Кзы
  • Макаров Владимир Михайлович
  • Ершова Анна Николаевна
  • Рубищева Екатерина Владимировна
RU2423745C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2006
  • Калаева Сахиба Зияддин Кызы
  • Макаров Владимир Михайлович
  • Шипилин Анатолий Михайлович
  • Захарова Ирина Николаевна
  • Бегунов Вячеслав Николаевич
  • Воронина Наталья Ивановна
  • Ерехинская Анна Геннадьевна
  • Клемина Анастасия Сергеевна
RU2307856C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2008
  • Калаева Сахиба Зияддин Кзы
  • Макаров Владимир Михайлович
  • Шипилин Анатолий Михайлович
  • Захарова Ирина Николаевна
  • Ерехинская Анна Геннадьевна
  • Бажанов Николай Николаевич
  • Шипилин Михаил Анатольевич
RU2363064C1
Способ получения магнитной жидкости 2016
  • Калаева Сахиба Зияддин Кзы
  • Макаров Владимир Михайлович
  • Захарова Ирина Николаевна
  • Шипилин Анатолий Михайлович
  • Чеснокова Александра Александровна
  • Андриянова Алена Валерьевна
  • Калаев Эйваз Ислам Оглы
RU2618069C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ НА ОСНОВЕ ВОДЫ 2008
  • Калаева Сахиба Зияддин Кзы
  • Макаров Владимир Михайлович
  • Шипилин Анатолий Михайлович
  • Ерехинская Анна Геннадьевна
  • Шипилин Михаил Анатольевич
RU2372292C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2010
  • Калаева Сахиба Зияддин Кзы
  • Макаров Владимир Михайлович
  • Ершова Анна Николаевна
  • Гущин Алексей Геннадьевич
RU2441294C1

Реферат патента 2010 года СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ

Изобретение относится к области получения магнитных жидкостей. Способ включает смешение растворов, содержащих трех- и двухвалентное железо в соотношении Fe3+/Fe2+=3:2, осаждение магнитных частиц добавлением к смеси растворов 28%-ного гидроксида аммония, покрытие осажденных магнитных частиц в водной среде стабилизирующим веществом, образующим в избытке гидроксида аммония растворимую аммонийную соль, подогрев суспензии магнитных частиц для преобразования стабилизирующего вещества, отделение водной фазы и добавление неводного жидкого носителя, обладающего некоторой растворимостью по отношению к стабилизирующему веществу. В качестве источника трехвалентного железа используют отход после очистки дымовых газов на металлургическом производстве, а в качестве источника двухвалентного железа - сульфат железа - отход производства титановых белил сернокислым способом. Способ позволяет получить магнитные жидкости с высокими магнитными характеристиками при использовании отхода металлургического производства и отхода производства титановых белил. 1 табл.

Формула изобретения RU 2 388 091 C1

Способ получения магнитной жидкости, включающий смешение растворов, содержащих трех- и двухвалентное железо в соотношении Fe3+/Fe2+=3:2, осаждение магнитных частиц добавлением к смеси растворов 28%-ного гидроксида аммония, покрытие осажденных магнитных частиц в водной среде стабилизирующим веществом, образующим в избытке гидроксида аммония растворимую аммонийную соль, подогрев суспензии магнитных частиц для преобразования стабилизирующего вещества, отделение водной фазы и добавление неводного жидкого носителя, обладающего некоторой растворимостью по отношению к стабилизирующему веществу, отличающийся тем, что в качестве источника трехвалентного железа используют отход после очистки дымовых газов на металлургическом производстве, а в качестве источника двухвалентного железа - сульфат железа - отход производства титановых белил сернокислым способом.

Документы, цитированные в отчете о поиске Патент 2010 года RU2388091C1

Имитатор судовых повреждений 1987
  • Агапов Анатолий Федорович
  • Бем Александр Сергеевич
  • Лямин Владимир Михайлович
SU1439031A1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2004
  • Калаева Сахиба Зияддин Кзы
  • Макаров Владимир Михайлович
  • Шипилин Анатолий Михайлович
  • Захарова Ирина Николаевна
  • Мельников Геннадий Михайлович
  • Дубов Андрей Юрьевич
RU2276420C1
RU 1658752 С, 20.03.1995
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2001
  • Макаров В.М.
  • Юсова А.П.
  • Шипилин А.М.
  • Мельников Г.М.
  • Калаева Сахиба Зияддин Кзы
RU2182382C1
JP 2005057229 А, 03.03.2005.

RU 2 388 091 C1

Авторы

Калаева Сахиба Зияддин Кзы

Макаров Владимир Михайлович

Шипилин Анатолий Михайлович

Захарова Ирина Николаевна

Ерехинская Анна Геннадьевна

Дубов Андрей Юрьевич

Шипилин Михаил Анатольевич

Даты

2010-04-27Публикация

2008-09-17Подача