FIELD: physics.
SUBSTANCE: hydrophone is placed in a pool at a known distance from the radiator. The radiator is excited with by a linear frequency modulated signal (LFM signal) with known parametres. The hydrophone is exposed to the continuous signal from the radiator. Instantaneous current values of the radiator and output voltage of the hydrophone are then measured, from which the complex frequency dependency of the transient impedance (TI) of the radiator and the hydrophone in the reverberation field of the non-damped hydroacoustic pool is determined. The complex frequency dependency of the TI of the radiator and the hydrophone are then determined in conditions of a free field through sliding complex weighted averaging in the set frequency interval of the complex frequency dependency of the TI of the radiator and the hydrophone in the reverberating field using a weighting function which is given by signal time delays reflected by the measurement pool.
EFFECT: more accurate hydrophone calibration.
3 dwg
Authors
Dates
2010-05-27—Published
2009-04-02—Filed