СПОСОБ АВТОМАТИЧЕСКОГО КОНТРОЛЯ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ ШИН ИСТОЧНИКОВ ПОСТОЯННОГО ТОКА НА КОРПУС Российский патент 2010 года по МПК G01R31/02 

Описание патента на изобретение RU2391679C1

Изобретение относится к измерительной технике, в частности к области автоматического контроля сопротивления изоляции цепей нерегулируемых и регулируемых источников постоянного тока, гальванически связанных, имеющих одну общую шину, например минусовую, шин, находящихся под напряжением или обесточенных.

Известен способ определения сопротивления путей утечек тока на землю в электрических системах по а.с. 2010247. Этот способ применим, в частности, для определения путей утечек тока на землю полюсов гальванически связанных источников постоянного напряжения, соединенных последовательно (аккумуляторы). Поскольку каждый элемент аккумулятора имеет внутреннее сопротивление, то, шунтируя его, можно изменять напряжение на элементе и, зная напряжение на других, составить систему уравнений. При этом число элементов в системе может быть любым. Сопротивление шунта должно быть соизмеримо с величиной внутреннего сопротивления элемента.

Недостатком этого способа контроля является большое энергопотребление в процессе контроля последовательно соединенных источников электрической энергии и неработоспособность способа контроля последовательно соединенных приемников, когда сопротивление пути утечки меньше или равно сопротивлению витка. Аппаратура объекта контроля (ОК) не допускает работу при циклическом изменении напряжения питания.

Наиболее близким по технической сущности к предлагаемому способу является способ контроля сопротивления изоляции шин источников постоянного тока а. с. 309320, заключающийся в том, что перед каждым подключением контролируемой шины к чувствительному элементу ее замыкают на корпус через сопротивление, эквивалентное сопротивлению чувствительного элемента, это исключает влияние емкостного тока от конденсаторов.

Недостатком этого способа контроля является невозможность работы устройства при преднамеренной связи общей шины источников с корпусом.

Задачей предлагаемого способа является повышение достоверности контроля сопротивления изоляции на корпус цепей нерегулируемых и регулируемых источников постоянного тока, гальванически связанных, имеющих одну общую шину, например минусовую; шины могут быть под напряжением и обесточенными, и в случае преднамеренной связи общей минусовой шины с корпусом (расширение функциональных возможностей).

Эта задача достигается тем, что вначале определяют отсутствие короткого замыкания цепей источников постоянного тока на корпус, для чего выполняют два измерения корпусного тока между общей минусовой шиной и корпусом вначале с включением в цепь измерителя тока ограничивающего резистора, а затем с добавлением в цепь еще контрольного источника постоянного напряжения, вычисляют разницу двух измеренных токов и по величине этой разнице судят о наличии короткозамкнутых конкретных цепей контролируемых источников постоянного тока с корпусом, а при отсутствии короткого замыкания производят два измерения корпусного тока между общей, минусовой шиной и корпусом с включением в цепь измерителя тока контрольного источника постоянного напряжения и без него и вычисляют эквивалентное сопротивление изоляции по разнице измеренных токов и величине напряжения контрольного источника.

Контроль сопротивления изоляции шин источников по предлагаемому способу выполняется следующим образом.

Упрощенная электрическая схема гальванически связанных нерегулируемых источников объекта контроля приведена на фиг.1. V1, V2, V3, V4 - источники напряжения с общей минусовой шиной; V3, V4 - первичные источники питания объекта контроля ОК (блоки В1 и В2 соответственно), V1, V2- источники блока питания (С) ОК, блоки А1 и А2 блоки нагрузок (аппаратура) соответствующих источников, Rл - сопротивление линии, Rш - сопротивление шунта. Общая минусовая шина соединена с корпусом перемычкой mc вне блоков ОК.

Упрощенная электрическая схема варианта устройства, обеспечивающего контроль по предлагаемому способу, приведена на фиг.2. Устройство входит в состав контрольно-проверочной аппаратуры (КПА) (на базе аппаратно-программных средств) и управляется программным модулем (ПМ) по определенному алгоритму. Устройство содержит (фиг.2): К1-К3 - реле, управляемое модулем выдачи команд КПА (модуль выдает команды по алгоритму ПМ); Ш - общая минусовая шина источников постоянного тока объекта контроля (ОК); К - корпус; ИП1 - измеритель тока в КПА; Vk - контрольный источник постоянного тока, Rогр - ограничивающий резистор, R - вспомогательный резистор для исключения разрыва цепи общий минус- корпус.

Устройство контроля корпуса подключается на время электрических испытаний ОК в разрыв между перемычкой заземления и корпусом согласно фиг.3.

Измерение всех напряжений источников ОК осуществляется измерительными модулями КПА. Устройство управляется программным модулем (ПМ), при этом автоматически исполняются последовательно повторяющиеся циклы контроля.

Работа устройства

1. При выдачи команды на начало контроля шин источников ОК программный модуль формирует запрос напряжений источников ОК и на первое значение корпусного тока (Iк1) между минусовой шиной и корпусом с подключенным Rогр.

2. После запроса тока Iк1 выдается команда ТКУ2, по которой срабатывают реле К2 и К3 и в цепь измерителя тока подключается контрольный источник Vк. Через t1 (0.25 с) выполняется второе измерение корпусного тока(Iк2). После запроса тока Iк2 программный модуль вычисляет разность двух токов Δ1=Iк1-Iк2.

Время t1, пределы измеренных значений токов и вычисленного значения сопротивления изоляции для принятия соответствующих решений по алгоритму окончательно устанавливаются по результатам работы с объектом контроля.

3. Программный модуль выполняет анализ Δ1 (для случая Rогр=1 кОм, Vк=1 B):

- при Δ1=0 mА (Iк1=Iк2=0) цепей источников ОК, связанных с корпусом, нет, ПМ формирует параметр «система контроля корпуса» (СКК) СКК=1 (Норма),

- при Δ1=1mA (Iк2=Vк/Rогр mA) - короткое замыкание на корпус общей минусовой шины, ПМ формирует параметр СКК=2;

- при Δ1=1mA (Iк1=V1/Rогр mA) - короткое замыкание на корпус плюсовой шины источника V1, ПМ формирует параметр СКК=3;

- при Δ1=1mA (Iк1=V2/Rогр mA) - короткое замыкание на корпус плюсовой шины источника V2, ПМ формирует параметр СКК=4;

- при Δ1=1mA (Iк1=V3/Rогр mA) - короткое замыкание на корпус плюсовой шины источника V3, ПМ формирует параметр СКК=5;

- при Δ1=1mA (Iк1=V4/Rогр mA) - короткое замыкание на корпус плюсовой шины источника V4, ПМ формирует параметр СКК=6;

- при Δ1=1mA (Iк1=V/Rогр mA) - короткое замыкание на корпус участка плюсовой цепи какого-либо источника, ПМ формирует параметр СКК=9;

- при Δ1<1 mA короткозамкнутых цепей источников ОК на корпус нет, программный модуль реализует алгоритм по вычислению Rэ по п.4.

4. При отсутствии короткого замыкания по п.3 выдается команда ТКУ1, исключается из цепи измерителя Rогр и выполняется первое измерение корпусного тока Iк3, после запроса ПМ тока Iк3 выдается команда ТКС2, исключается из цепи измерителя Vк и выполняется второе измерение корпусного тока Iк4, после запроса тока Iк4, ПМ вычисляет разницу токов Δ2=Iк4-Iк3, эквивалентное сопротивление R3 по разности токов и напряжению Vк .

5. Программный модуль выполняет анализ Rэ.

- Если сопротивление Rэ>Rдоп (допустимая величина сопротивления изоляции, заданная на электрические испытания ОК), ПМ формирует параметр СКК=1.

- Если сопротивление Rэ<Rдоп, программный модуль выполняет анализ Iк4.

- Если Iк4=0 (выражение Iк4-Iк3 берется по абсолютной величине), значение Rэ при этом равно сопротивлению изоляции общей минусовой шины. ПМ формирует параметр СКК=7.

- Если Iк4≠0, ПМ формирует параметр СКК=8, на корпусе цепи источников.

6. После формирования каждого параметра СКК программный модуль формирует кадр 1, выдает команду ТКС1 и начинает новый цикл контроля с п.1

Параметр СКК находится на постоянном контроле в КПА.

Прекращение контроля производится по команде, вызывающей остановку работы программного модуля.

Поиск цепей плюсовой шины источника ОК, связанных с корпусом по п.5, следует начинать с того источника, напряжение которого равно произведению эквивалентного сопротивления изоляции по п.5 и корпусного тока Iк4≠0 по п.4 (если исходить из предположения, что наиболее вероятной связью с корпусом может быть только связь одной шины источников).

Предложенное техническое решение дает при использовании положительный эффект, заключающийся в повышении достоверности контроля, расширении функциональных возможностей.

Предлагаемый способ может быть использован в контрольно-проверочной аппаратуре (аппаратно-программных комплексах) для работ со сложными объектами контроля и в «интеллектуальных» средствах измерения сопротивления изоляции источников других устройств.

На предприятии вышеуказанный способ отработан и заложен в техническую документацию КПА по испытаниям объектов контроля.

Похожие патенты RU2391679C1

название год авторы номер документа
СПОСОБ АВТОМАТИЧЕСКОГО КОНТРОЛЯ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ ШИН ИСТОЧНИКОВ ПОСТОЯННОГО ТОКА НА КОРПУС 2006
  • Ловушкин Иван Николаевич
  • Дубенко Владимир Алимович
RU2351940C2
СПОСОБ КОНТРОЛЯ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ ЦЕПЕЙ ПОСТОЯННОГО ТОКА ОТНОСИТЕЛЬНО КОРПУСА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2012
  • Стариков Леонид Филиппович
  • Слепухин Андрей Николаевич
  • Гладских Алексей Анатольевич
RU2503963C2
СПОСОБ АВТОМАТИЧЕСКОГО КОНТРОЛЯ ИЗОЛЯЦИИ ИСТОЧНИКОВ ПОСТОЯННОГО ТОКА ОТНОСИТЕЛЬНО КОРПУСА И ОТНОСИТЕЛЬНО ДРУГ ДРУГА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2016
  • Ильин Анатолий Николаевич
  • Малыгин Сергей Анатольевич
  • Карпов Евгений Владимирович
RU2647218C2
УСТРОЙСТВО КОНТРОЛЯ АККУМУЛЯТОРНОЙ БАТАРЕИ 2013
  • Филиппов Анатолий Николаевич
  • Пушкин Николай Моисеевич
RU2531062C1
Способ определения места короткого замыкания неоднородной контактной сети однопутного участка электрифицированного транспорта с двухсторонним питанием 2022
  • Герман Леонид Абрамович
  • Субханвердиев Камиль Субханвердиевич
  • Куликов Александр Леонидович
  • Карпов Иван Петрович
  • Обалин Михаил Дмитриевич
RU2789434C1
Способ производственного контроля характеристики преобразования феррозонда 2019
  • Цыбин Юрий Николаевич
  • Киселев Сергей Александрович
RU2723154C1
Стенд для расчета токов короткого замыкания межподстанционной зоны тяговой сети переменного тока 2018
  • Герман Леонид Абрамович
  • Субханвердиев Камиль Субханвердиевич
  • Серебряков Александр Сергеевич
RU2705517C1
Способ контроля характеристики преобразования магнитного поля феррозондом 2019
  • Цыбин Юрий Николаевич
RU2723153C1
СИСТЕМА КАТОДНОЙ ЗАЩИТЫ И ДИАГНОСТИКИ ТРУБОПРОВОДА 2000
  • Жабреев В.С.
  • Федяев В.Л.
  • Федяев К.В.
  • Садов В.Б.
RU2157424C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ПАРАМЕТРОВ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ 2007
  • Бессонов Евгений Иванович
  • Полянский Владимир Иванович
  • Лакийчук Дмитрий Евменович
  • Степанцов Олег Евгеньевич
RU2334240C1

Иллюстрации к изобретению RU 2 391 679 C1

Реферат патента 2010 года СПОСОБ АВТОМАТИЧЕСКОГО КОНТРОЛЯ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ ШИН ИСТОЧНИКОВ ПОСТОЯННОГО ТОКА НА КОРПУС

Изобретение относится к измерительной технике и может быть использовано в аппаратно-программных комплексах (КПА) и в «интеллектуальных» средствах измерения сопротивлений изоляции цепей источников. Технический результат: повышение достоверности контроля сопротивления изоляции цепей гальванически связанных источников постоянного тока, расширение функциональных возможностей за счет обеспечения возможности контроля в случае преднамеренной связи общей минусовой шины с корпусом. Сущность: вначале определяют отсутствие короткого замыкания цепей источников постоянного тока на корпус. Для этого выполняют два измерения корпусного тока между общей минусовой шиной и корпусом: с включением в цепь измерителя тока ограничивающего резистора и затем с добавлением в цепь контрольного источника постоянного напряжения. По величине разницы токов судят о наличии короткозамкнутых цепей контролируемых источников постоянного тока с корпусом. При отсутствии короткого замыкания производят два измерения корпусного тока между общей минусовой шиной и корпусом с включением в цепь измерителя тока контрольного источника постоянного напряжения и без него. Вычисляют эквивалентное сопротивление изоляции по разнице измеренных токов и величине напряжения контрольного источника. 3 ил.

Формула изобретения RU 2 391 679 C1

Способ автоматического контроля сопротивления изоляции цепей гальванически связанных источников постоянного тока путем измерения корпусного тока и допускового контроля вычисленного эквивалентного сопротивления изоляции с помощью программного модуля с выдачей информации, отличающийся тем, что вначале определяют отсутствие короткого замыкания цепей источников постоянного тока на корпус, для чего выполняют два измерения корпусного тока между общей минусовой шиной и корпусом вначале с включением в цепь измерителя тока ограничивающего резистора, а затем с добавлением в цепь еще контрольного источника постоянного напряжения вычисляют разницу двух измеренных токов и по величине этой разницы судят о наличии короткозамкнутых конкретных цепей контролируемых источников постоянного тока с корпусом, а при отсутствии короткого замыкания производят два измерения корпусного тока между общей минусовой шиной и корпусом с включением в цепь измерителя тока контрольного источника постоянного напряжения и без него и вычисляют эквивалентное сопротивление изоляции по разнице измеренных токов и величине напряжения контрольного источника.

Документы, цитированные в отчете о поиске Патент 2010 года RU2391679C1

RU 2006132155 А, 20.03.2008
СПОСОБ ОПРЕДЕЛЕНИЯ СОПРОТИВЛЕНИЯ ПУТЕЙ УТЕЧЕК ТОКА НА ЗЕМЛЮ В ЭЛЕКТРИЧЕСКИХ СИСТЕМАХ 1991
  • Седов А.В.
  • Лачин В.И.
  • Малина А.К.
RU2010247C1
СПОСОБ АВТОМАТИЧЕСКОГО КОНТРОЛЯ ОТСУТСТВИЯ 0
SU309320A1
Устройство для автоматического контроля сопротивления изоляции шин источника постоянного тока 1977
  • Балагула Яков Калманович
  • Бондарь Аркадий Евгеньевич
  • Браун Марк Наумович
  • Боршевский Виктор Моисеевич
SU737886A1
Способ контроля сопротивления изоляции шин источников питания постоянного тока 1980
  • Петренко Василий Иванович
  • Горлач Анатолий Александрович
SU894601A1
Устройство для охлаждения водою паров жидкостей, кипящих выше воды, в применении к разделению смесей жидкостей при перегонке с дефлегматором 1915
  • Круповес М.О.
SU59A1

RU 2 391 679 C1

Авторы

Ловушкин Иван Николаевич

Дубенко Владимир Алимович

Даты

2010-06-10Публикация

2009-02-04Подача