СОСТАВ ДЛЯ ОЧИСТКИ ПОВЕРХНОСТЕЙ ОТ МАСЛОЖИРОВЫХ ЗАГРЯЗНЕНИЙ Российский патент 2010 года по МПК C23G5/28 

Описание патента на изобретение RU2392354C1

Изобретение относится к области использования растворителей в процессах обезжиривания, оно может быть использовано для очистки поверхностей от масложировых загрязнений в радиоэлектронике, точном машиностроении, оптике и других областях техники.

Истощение озонового слоя Земли стимулировало поиск по замене старых, хорошо известных растворителей на основе хлорфторуглеродов (ХФУ, CFC) - хладона-113 C2Cl3F3, хладона-112 C2Cl4F2 - и композиций на их основе на новые вещества типа гидрохлорфторуглеродов (ГХФУ, HCFC) - такие как хлодон-122а (C2HCl3F2), Х-123 (C2HCl2F3), Х-141b (C2H3Cl2F) - со значительно более низким озоноразрушающим потенциалом, а также на вещества с нулевым озоноразрушающим потенциалом - гидрофторуглероды (ГФУ, HFC) и перфторуглероды (ПФУ, FC).

Преимуществами веществ двух последних классов являются их негорючесть и низкая токсичность. Однако при этом все они обладают существенным недостатком - в чистом виде высоко- и перфторированные углеводороды не могут быть использованы для обезжиривания вследствие низкой растворимости в них минеральных масел, составляющих основу технологических загрязнителей. Кроме того, ГФУ и ПФУ относятся к парниковым газам и попадают под действие Киотского протокола.

В настоящее время зарубежными фирмами разработано большое количество смесевых растворителей, большей частью азеотропных, на базе таких гидрофторуглеродов как Х-43-10me, Х-7100, Х-С438ее, Х-С226ее, Х-245fa. В качестве сорастворителей в смесях применяются в основном пожароопасные вещества: дихлорэтилен, спирты, алифатические и циклические углеводороды, нитрометан, метиленхлорид. Наличие в смесевых растворителях достаточного количества гидрофторуглеродов делает их пожаробезопасными и более универсальными, такие смеси способны растворять в себе как минеральные, так и синтетические масла и смазки.

В отличие от гидрофторуглеродов, перфторуглероды практически не смешиваются с большинством эфиров, кетонов, спиртов, высших алифатических углеводородов и хлорорганических растворителей из-за большой разницы в значениях параметров растворимости. При смешении в этом случае образуются две фазы, нижняя из которых, как правило, представляет собой перфторуглерод с незначительным содержанием нефторированного растворителя, верхняя - нефторированный растворитель с незначительным содержанием перфторуглерода. Наиболее близки к перфторуглеродам по значениям параметра растворимости углеводороды.

Minnesota Mining и MFG (United States Patent 5352378 International Classes: C10M 107/50; C10M 111/04; C10M 107/00; C10M 111/00; C10M 129/00) предлагает негорючий жидкий состав для растворения силиконовой смазки, включающий нефторированный растворитель, в котором растворяется смазка и фторированный растворитель из группы ГФХУ, ГФУ и ПФУ в количестве достаточном, чтобы сделать состав негорючим. В качестве перфторуглерода применяют перфторпентан, перфторгексан, перфторгептан, перфтор-N-метилморфолин и перфтор-диметилциклогексан. В качестве нефторированного растворителя - н-гексан, н-гептан, н-октан, н-нонан, трет-бутанол, гексаметилдисилоксан и изопропиловый эфир.

Известны смесевые растворители для очистки поверхностей от масложировых загрязнений на основе смеси транс- и цис-изомеров перфтор-(4-метил-пентена-2) (ФОЛ-62). В качестве второго компонента смесей предлагается использовать фторхлоруглеводород или предельный углеводород изо- и/или нормального строения с длиной цепи C5÷C8. В том числе негорючий азеотропный растворитель ФОЛ-62 + Х-141b с температурой кипения 27-29°С при Р=760 мм рт. ст. с GWP=485,49 и

ODP=0,084 следующего состава, мас.%: ФОЛ-62 - 43,3, Х-141b - 56,7.

Наиболее близким аналогом предлагаемого авторами состава является предложенный Motorola, Inc., Schaumburg «Неазеотропный смесевой растворитель для очистки электронных сборок и удаления флюсов» - прототип [US Patent 5,395,548 date of patent: Mar.7, 1995, Int. Cl.6 C23G 5/024; C23G 5/028; C11D 7/28].

Смесевой растворитель состоит из компонентов А и В. В качестве компонента А используются галогенированные или негалогенированные спирты, содержащие от 2 до 4 атомов углерода: изопропанол, этанол, н-пропанол, н-бутанол, 2,2,3,3,3-пентафторпропанол, 1,1,1,2,2-пентафтор-3-пропанол и др. В качестве компонента В используются моноциклические или бициклические терпены, терпеновые спирты и их смеси.

Использование неазеотропных смесей растворителей обусловлено необходимостью создания над смесью, нагретой выше температуры кипения компонента А, паровой фазы, состоящей в основном из компонента А. Пары компонента А конденсируются при помощи конденсирующих элементов (t~10°С) для создания паровой прослойки над жидкой смесью.

В случае применения 2,2,3,3,3-пентафторпропанола пары фторированного спирта над смесью, содержащей жидкий спирт и терпены, предотвратят образование взрывоопасной смеси воздуха с нагретой жидкой фазой.

Недостатком предложенного состава, на авторский взгляд, является высокая температура кипения, необходимая для создания «фторуглеродного одеяла». В случае применения 2,2,3,3,3-пентафторпропанола - 80°С. К тому же частично фторированные спирты химически нестабильны в присутствии сильных кислот и щелочей.

Техническим результатом предлагаемого изобретения является расширение арсенала озонобезопасных, не являющихся парниковыми газами средств для очистки поверхностей.

Технический результат достигается тем, что состав для очистки поверхностей от масложировых загрязнений содержит фторуглерод и хлоруглеводород. В качестве фторуглерода он содержит перфтор-(4-метил-пентена-2) (ФОЛ-62), а в качестве хлоруглеводорода - метиленхлорид, которые образуют низкокипящий гетерогенный азеотроп, при следующем соотношении, мас.%:

фторуглерод - 20÷80 хлоруглеводород - 80÷20

Состав для очистки дополнительно содержит негалогенированный растворитель.

В качестве негалогенированного растворителя используются высшие алифатические углеводороды, эфиры, кетоны, спирты или их смеси с температурой кипения выше 70°С.

ФОЛ-62 - перфторуглерод непредельного ряда, является продуктом димеризации гексафторпропилена и представляет собой смесь транс- и цис-изомеров перфтор-(4-метил-пентена-2), выпускается отечественной промышленностью по ТУ 6-02-18-126-87.

ФОЛ-62 - бесцветная жидкость со следующими свойствами:

молекулярная масса, М - 300,05 температура кипения - 46-51°С температура плавления - 75°С плотность d20 4 - 1,636 г/см3 ПДК (по C3F6) - 5 мг/м3, 3 класс опасности гарантийный срок хранения - 3 года

Как и все перфторуглероды (ПФУ) ФОЛ-62 озонобезопасен, однако в отличие от предельных ПФУ способен к взаимодействию с нуклеофильными реагентами из-за наличия в молекуле двойной связи, поэтому не относится к парниковым газам. Например, время жизни в атмосфере перфторпропана составляет 2600 лет, а перфторпропена - 5,8 дней.

Кроме того, ФОЛ-62 является эффективным флегматизатором. По значению минимальной объемной огнетушащей концентрации (МООК) (по н-гептану) он наиболее близок к Х-114 В2 среди современных озонобезопасных пожаротушащих агентов. Для сравнения:

МООК, об.%

Х-114В2 - 2,4 ФОЛ-62 - 4,0 (0,49 г/л) Х-218 - 7,0 Х-227еа - 7,2

Метиленхлорид (МХ) (дихлорметан), выпускаемый по ГОСТ 9968-86, стабилизирован ~0,5 мас.% этанола - озонобезопасная, не являющаяся парниковым газом, трудногорючая жидкость со следующими свойствами:

молекулярная масса, М - 84,93 температура кипения - 39,95°С температура плавления - -96,7°С плотность d20 4 - 1,326 г/см3 ПДК - 50 мг/м3 температура воспламенения - отсутствует конц. пределы распр. пл. в воздухе - 14-19% (об.) гарантийный срок хранения - 1 год

Пример 1

ФОЛ-62 (50 об.%) + МХ (50 об.%) образуют при смешении две фазы.

По результатам газохроматографического анализа растворимость МХ в ФОЛ-62 при 20°С составляет 5,8 об.%, растворимость ФОЛ-62 в МХ - 3,0 об.%.

Известно, что кипение смеси взаимно нерастворимых жидкостей происходит при температуре ниже, чем температура кипения каждого из компонентов. Каждая жидкость испаряется так, как будто бы другая отсутствует, и состав пара зависит исключительно от давления паров чистых компонентов. Таким образом, соотношение компонентов в паровой фазе не зависит от соотношения компонентов в жидкой смеси и сохраняется постоянным при данной температуре до тех пор, пока в смеси существуют две фазы.

Кипение смеси ФОЛ-62 + МХ в открытой емкости при атмосферном давлении 742 мм рт. ст. начинается при температуре 25°С. Дистиллят, полученный перегонкой смеси при этой температуре, имеет следующий состав:

ФОЛ-62 - 70 об.% МХ - 30 об.%

По закону Дальтона для смеси газов и паров p=p1+p2. Для МХ в справочной литературе имеются значения коэффициентов логарифмического уравнения Антуана для зависимости давления насыщенных паров от температуры: lgp=7,07138-1134,6/(t+231). Расчетное давление насыщенного пара МХ при 25°С равно 436 мм рт. ст. Следовательно, давление насыщенного пара ФОЛ-62 при 25°С составит: 742-436=306 мм рт. ст.

Расчетная величина плотности паров ФОЛ-62 при 25°С составляет 4,9 г/л, что в 10 раз превышает его МООК.

Наличие в паровой фазе более 50 об.% ФОЛ-62 обеспечит пожаробезопасность его смеси с трудногорючим метиленхлоридом.

Эксперимент по определению моющей способности паров предлагаемого растворителя проводили в трехгорлой колбе объемом 1 л при заполнении ее растворителем на 1/2. В качестве растворителя использовали смесь ФОЛ-62 (50 об.%) + МХ (50 об.%). Колбу помещали в термостат (температура воды 35°С) таким образом, чтобы уровень воды в термостате был незначительно выше уровня растворителя в колбе. Для конденсации паров и возврата их в колбу применяли холодильник, охлаждаемый водой t=15°С. Холодильник подсоединяли к одной из боковых горловин колбы через u-образный переходник, позволяющий повернуть его для отбора паровой фазы. Металлический образец с нанесенным на него замасливателем (10 мг минерального масла Suniso) изначально располагали в широком горле колбы.

По достижении температуры жидкой фазы 32°С образец опускали в паровую зону. Температура конденсации паров при этом составила 29,5°С, паровая фаза имела следующий состав:

ФОЛ-62 - 65 об.% МХ - 35 об.%

После прекращения конденсации паров на поверхности металлического образца его извлекали из колбы и определяли количество остаточного содержания масла люминесцентным методом.

Количество остаточного содержания масла составило менее 0,1 мас.%.

Пример 2

ФОЛ-62 (33,3 об.%) + МХ (33,3 об.%) + спирт (изопропиловый спирт (ИПС)) (33,3 об.%) образуют при смешении две фазы. Нижняя фаза представляет собой в основном ФОЛ-62, верхняя фаза - раствор МХ и ИПС в объемном соотношении 1:1.

Смесь в трехгорлой колбе с обратным холодильником нагрета в термостате (см. пример 1) до температуры 33°С. Температура конденсации составила 32°С, паровая фаза при этом имела следующий состав:

ФОЛ-62 - 71 об.% МХ+ИПС - 29 об.%

В данном примере не проводили испытания моющей способности смесевого растворителя. Предполагается, что отмывка проводится в смеси МХ + ИПС, моющая способность этой композиции не вызывает сомнения.

Предлагаемый двухфазный растворитель может быть использован в установке для парового обезжиривания. Обезжиренный погружением в раствор при 33°С объект может быть в дальнейшем охлажден в зоне конденсирующих змеевиков и подвергнут повторному обезжириванию в паровой зоне.

При этом паровая зона, содержащая пар вышеуказанного состава, снизит риск воспламенения паров ИПС.

Пример 3

ФОЛ-62 (33,3 об.%) + МХ (33,3 об.%) + углеводород (циклогексан (ЦГ)) (33,3 об.%) образуют при смешении две фазы. Нижняя фаза представляет собой в основном ФОЛ-62, верхняя фаза - раствор МХ и ЦГ в объемном соотношении 1:1.

Смесь в трехгорлой колбе с обратным холодильником нагрета в термостате (см. пример 1) до температуры 32°С. Температура конденсации составила 31,5°С, паровая фаза при этом имела следующий состав:

ФОЛ-62 - 66,1 об.% МХ - 28,1 об.% ЦГ - 5,8 об.%

Для предлагаемого смесевого растворителя была изучена зависимость температуры конденсации паровой фазы и содержания в ней ФОЛ-62 от исходного соотношения компонентов.

Жидкая фаза, об.% tтермостата, °С tконденсации, °C Паровая фаза, об.% ФОЛ-62 МХ ЦГ ФОЛ-62 33,3 33,3 33,3 35 30 69 20,0 33,3 46,7 35 31 70 20 60 20 37 32 68

Пример 4

ФОЛ-62 (40 об.%) + МХ (40 об.%) + эфир (этиленгликоля моноэтиловый эфир (этилцеллозольв ЭЦ)) (20 об.%) образуют при смешении две фазы. Нижняя фаза представляет собой в основном ФОЛ-62, верхняя фаза - раствор МХ и ЭЦ в объемном соотношении 2:1.

Смесь в трехгорлой колбе с обратным холодильником нагрета в термостате (см. пример 1) до температуры 32°С. Температура конденсации составила 27°С, паровая фаза при этом имела следующий состав:

ФОЛ-62 - 83 об.% МХ - 17 об.% ЭЦ - <0,5 об.%

Таким образом, предложенный состав позволяет расширить арсенал озонобезопасных, не являющихся парниковыми газами средств для очистки поверхностей.

Похожие патенты RU2392354C1

название год авторы номер документа
СОСТАВ ДЛЯ ОЧИСТКИ ПОВЕРХНОСТЕЙ ОТ МАСЛОЖИРОВЫХ ЗАГРЯЗНЕНИЙ 2005
  • Орехов Валентин Тимофеевич
  • Скачедуб Анатолий Алексеевич
  • Раченок Ирина Георгиевна
  • Павлюкевич Екатерина Юрьевна
RU2293800C1
СОСТАВ ДЛЯ ПРОТИВОИЗНОСНЫХ ПОКРЫТИЙ 2005
  • Орехов Валентин Тимофеевич
  • Скачедуб Анатолий Алексеевич
  • Раченок Ирина Георгиевна
RU2288945C1
Способ очистки перфторуглеродов С @ -С @ 1984
  • Томас В.Бирл
SU1563590A3
1,2-БИС(ПЕРФТОР-трет-БУТОКСИ)ЭТАН В КАЧЕСТВЕ КОНТРАСТНОГО ВЕЩЕСТВА ДЛЯ МАГНИТНО-РЕЗОНАНСНОЙ ТОМОГРАФИИ НА ЯДРАХ F 2022
  • Гервиц Лев Львович
  • Сиган Андрей Лейзорович
  • Маркова Алина Александровна
  • Гуляев Михаил Владимирович
  • Павлова Ольга Сергеевна
  • Пирогов Юрий Андреевич
RU2795915C1
ФИЗИОЛОГИЧЕСКИ ПРИЕМЛЕМЫЕ ЭМУЛЬСИИ, СОДЕРЖАЩИЕ ГИДРИДЫ ПЕРФТОРУГЛЕРОДНОГО ЭФИРА, И СПОСОБЫ ИХ ИСПОЛЬЗОВАНИЯ 1995
  • Мур Джордж Дж, И.
  • Флинн Ричард М.
  • Гуэрра Мигель А.
RU2159610C2
КОМПОЗИЦИЯ ХЛАДАГЕНТА 2022
  • Елтышев Илья Павлович
RU2807753C1
СПОСОБ ПОЛУЧЕНИЯ ЛЫЖНОЙ СМАЗКИ НА ОСНОВЕ ПЕРФТОРУГЛЕРОДОВ 2012
  • Куликов Владимир Семенович
  • Цветков Сергей Александрович
  • Цветков Дмитрий Сергеевич
RU2506295C2
СПОСОБ ПОЛУЧЕНИЯ ГЕКСАФТОРБУТАДИЕНА 2002
  • Махмутов Ф.А.
  • Царева Е.И.
  • Шебаршинова М.Г.
RU2247104C2
КОМПОЗИЦИЯ ХЛАДАГЕНТА 2005
  • Трукшин Игорь Георгиевич
  • Сараев Владимир Алексеевич
  • Зотиков Владимир Степанович
  • Молчанов Олег Николаевич
  • Барабанов Валерий Георгиевич
  • Самойленко Валерий Иванович
RU2280667C1
ЭМУЛЬСИЯ ПЕРФТОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ МЕДИЦИНСКОГО НАЗНАЧЕНИЯ И СПОСОБ ЕЁ ПОЛУЧЕНИЯ 2004
RU2259819C1

Реферат патента 2010 года СОСТАВ ДЛЯ ОЧИСТКИ ПОВЕРХНОСТЕЙ ОТ МАСЛОЖИРОВЫХ ЗАГРЯЗНЕНИЙ

Изобретение относится к области очистки поверхностей и может быть использовано для очистки поверхностей от масложировых загрязнений в радиоэлектронике, точном машиностроении, оптике и других областях техники. Состав содержит перфтор-(-4-метил-пентена-2) и метиленхлорид, образующие низкокипящий гетерогенный азеотроп. Соотношение компонентов в составе следующее, мас.%: перфтор-(-4-метил-пентена-2) 20-80, метиленхлорид 80-20. Состав может дополнительно содержать негалогенированный растворитель, в качестве которого используют высшие алифатические углеводороды, эфиры, кетоны, спирты или их смеси с температурой кипения выше 70°С. Предложенный состав позволяет расширить арсенал озонобезопасных, не являющихся парниковыми газами средств для очистки поверхностей. 3 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 392 354 C1

1. Состав для очистки поверхностей от масложировых загрязнений, содержащий фторуглерод и хлоруглеводород, отличающийся тем, что в качестве фторуглерода он содержит перфтор-(-4-метил-пентена-2), а в качестве хлоруглеводорода - метиленхлорид, образующие низкокипящий гетерогенный азеотроп.

2. Состав по п.1, отличающийся тем, что он содержит компоненты при следующем соотношении, мас.%:
перфтор-(-4-метил-пентена-2) 20-80 метиленхлорид 80-20

3. Состав по п.1, отличающийся тем, что он дополнительно содержит негалогенированный растворитель.

4. Состав по п.3, отличающийся тем, что в качестве негалогенированного растворителя используются высшие алифатические углеводороды, эфиры, кетоны, спирты или их смеси с температурой кипения выше 70°С.

Документы, цитированные в отчете о поиске Патент 2010 года RU2392354C1

US 5395548 A, 07.03.1995
СОСТАВ ДЛЯ ОЧИСТКИ ПОВЕРХНОСТЕЙ ОТ МАСЛОЖИРОВЫХ ЗАГРЯЗНЕНИЙ 2005
  • Орехов Валентин Тимофеевич
  • Скачедуб Анатолий Алексеевич
  • Раченок Ирина Георгиевна
  • Павлюкевич Екатерина Юрьевна
RU2293800C1
1971
SU427986A1
ЖИДКАЯ ОЧИЩАЮЩАЯ КОМПОЗИЦИЯ, ЕЕ ВАРИАНТ И СПОСОБ УДАЛЕНИЯ ЗАГРЯЗНЕНИЙ С ПОДЛОЖКОЙ С ИСПОЛЬЗОВАНИЕМ ОЧИЩАЮЩЕЙ КОМПОЗИЦИИ 1992
  • Майкл Э.Хейс
  • Дональд П.Хосман
  • Кевин Р.Хребенар
  • Роберт Д.Селл
RU2113921C1
WO 9311280 A1, 10.06.1993.

RU 2 392 354 C1

Авторы

Раченок Ирина Георгиевна

Орехов Валентин Тимофеевич

Рыбаков Анатолий Георгиевич

Гурдина Екатерина Леонидовна

Даты

2010-06-20Публикация

2008-09-30Подача