Изобретение относится к строительству вантовых мостов подвеской пролетного строения пилону.
В постановочной части в настоящем решаемая техническая задача направлена на снижение концентрации механического напряжения в местах креплений анкерных приспособлений балки пролетного строения моста. Это достигается анкеровкой в нижнем (растянутом) ярусе балки пролетного строения и жесткой анкеровкой с расчетным углом крепления и верхним концом ванты, центрировано пропущенным в сквозном канале пилона.
При этом особенность технической задачи заключается в том, что указанные конструкции возводятся для эксплуатации в регионах с сезонным преимуществом пониженных температур. Возводимые конструкции испытывают двухфакторное воздействие, а именно - влияния пониженных температур и динамические состояния. А именно, воздействие проезжающей транспортной техники, а также влияние ветрового потока. В связи с этим имеет место выделенное двухфакторное воздействие на малых площадях креплений (посредством анкерных приспособлений). Поэтому выделенное (двухфакторное воздействие - пониженные температуры и динамические состояния) первоначально усиливают концентрацию механического напряжения. А в последующем в случае нестрогого соблюдения угла крепления ванты анкерному приспособлению порождают изгибающий момент в указанных узлах креплений (выполненных жесткой анкеровкой). Тем самым в конечном итоге (на малых площадях креплений) способствуя приближению концентрации механического напряжения, ее расчетному предельному состоянию. При этом (вследствие порождаемого изгибающего момента) имея преждевременный износ вант в узлах креплений.
Однако известно (см. Устройство для гашения колебаний вант Байтового моста. Yang IN Active control and stability of cable staed bridge. AC №1182102 от 4.04.83), также известно (см. стр.113, Горев В.Д. и др. Металлические конструкции том 1, элементы конструкций, учебник М. 2004), где расчетные параметры металлических конструкций исходят из их геометрической неизменности. Где считается, что при пониженных температурах и в динамическом воздействии наблюдаются случаи вибрационной хрупкости материала. Считается, что материал из вязкого состояния (скачкообразно) переходит в хрупкое состояние, в особенности воздействием низких температур.
С целью недопущения приближения расчетных параметров конструкции ее предельному состоянию и исключения возможного порождения изгибающего момента в отмеченных узлах креплений, а также с целью недопущения преждевременного износа вант предлагается нижеописываемый способ (дополнительного) учета геометрической изменности конструкции.
Аналогом предлагаемому может быть способ монтажа Байтового моста (см. Попов Б.Ю. и др., АС №1101492 от 28.03.83). А ближайшим аналогом является способ возведения двухпоясных висячих мостов (см. Ерунов Б.Г., Фатхуллин P.P., АС №1214816 от 13.06.84.). И предлагаемое, в отличие от приведенных аналогов, целенаправленно ориентирует совокупность действий на достижение расчетных параметров обеспеченной надежности конструкции в целом являясь существенным дополнением (приведенным способам) в учете изменений геометрических параметров конструкции. При этом целенаправленно преследуя цель возможного исключения вибрационной хрупкости материала, в пониженных температурах, а именно дополнительным учетом соблюдения правильности исполнения геометрии конструкции. Поскольку на практике считается, что геометрически правильно исполненная конструкция во многом способствует противостоянию негативно действующим факторам. Предлагаемый способ, по существу, достигается правильным распределением нагрузок в узловых креплениях и учетом ожидаемых усилений механических напряжений. Тем самым, в целом, способствуя увеличению вибрационной прочности конструкции.
В нижеследующем рассмотрении, например (см. стр.333 Д.Джанколи Физика, ч.1, М. 1989), известно, что между температурными напряжениями и изменениями длин элементов (например, конструкции) существует приведенная, пропорциональная связанность, а именно:
где Lo - первоначальная длина (например, длина на стандартную температуру, где стандартная температура считается равной +20°С), а ΔL - изменение длины (то есть, удлинение или укорочение) вследствие изменения температуры. Величина Е - модуль упругости Юнга. A F - прилагаемая сила, величина А - площадь поперечного сечения, где в целом отношение именуется механическим напряжением.
А в температурных (тепловых) напряжениях (см. стр.506 Д.Джанколи. Физика, ч.1, М. 1989) установлена зависимость:
где - относительное изменение длины, а α - коэффициент линейного температурного расширения, ΔT - интервал изменения температуры, например, со стандартной температуры, +20°С.
Руководствуясь нормативными предписаниями (см. СНиП - 2.03.01-84 и СНиП - 2.01.01-82, Строительные нормы и правила), коэффициент линейного расширения принимается равным определенной величине и считается, что линейность сохраняется в достаточном интервале изменений температуры.
В нижеследующем также отметим особенность расчетов в регионах с преимуществом пониженных температур, заключающуюся в расчетах не на удлинения, а в расчетах на укорочения элементов конструкции, поскольку механические напряжения получаются посредствам укорочения, получающегося вследствие воздействия пониженных температур. И механическое напряжение , исходя из приведенных формул (1) и (2), окончательно выражается нижеследующей зависимостью:
Вследствие выше отмеченного существует возможность пересчета параметров (например, длин) со стандартной температуры, Тст=+20°С (Тст - стандартная температура, равная +20°С), пересчетом на укорочение, например на температуру -20°С. С интервалом изменения температуры:
ΔT=40°С (ΔТ - величина изменения температуры).
В дальнейшем, воспользовавшись аналогией, а именно (см. подр. Стр.50 В.Д.Фельдман, Д.Ж.Михелев Основы инженерной геодезии, М. 2001), устанавливаем, что поправка температуры стального мерного прибора, со стандартной температуры (Тст=+20°С) и начальной длины: Lo=30 м, до следующей температуры понижения Т=-6°С, где укорочение представлено величиной, а именно:
ΔL=α·ΔT·Lо=12.5·10-6·(20°C)·30=9,8 мм.
Тогда относительное укорочение стального мерного прибора составит нижеследующую величину:
И полученную величину относительного укорочения можем использовать в нижеследующих расчетах. А именно, в целом, можем иметь:
где E - модуль упругости Юнга (см. стр.336 Д.Джанколи, Физика ч.1, М. 1989) и его табличное значение, для материала (сталь), составит:
Следовательно, ожидаемое увеличение механического напряжения будет составлять нижеследующую величину:
В весовом выражении, полагая 100 Н ≈ 10 кг, можем иметь:
И на основе вышеприведенных расчетов устанавливаем, что в жесткосвязанных конструкциях температурные напряжения существенно увеличивают концентрацию механических напряжений.
Рассматривая ранее приведенную конструкцию анкеровки балки пролетного строения моста, отметим, что жесткая анкеровка способствует возникновению изгибающего момента, на малых площадях креплений. Также отметим, что с увеличением длин (габаритов в целом) возводимых (рассматриваемых) конструкций мостов и из-за эксплуатации в интервале сезонных пониженных температур и необходим (дополнительный) расчетный учет изменений геометрических параметров.
Считая, например, пропорциональной связанностью:
, относительного изменения длин элементов конструкции, а именно полагая изменения, - на 30 метров - 1 см, на 60 метров - 2 см, на 90 метров - 3 см и т.д., в температурном интервале, например (ΔT=40°С), в длине Lo=100 метров, можем иметь расчетную величину укорочения, достигающую значения порядка 5-6 см, которая не согласуется с требуемыми точностями монтажных исполнений, при геодезическом сопровождении строительства (см. СНиП - 2.01.01-82, СНиП - 2.03.01-84, Строительные нормы и правила).
Результат достигается тем, что в способе геометрического обеспечения расчетного угла крепления ванты пролетному строению моста, возводимого в условиях постоянного направления ветрового потока, включающем опоры, пилоны, наклонные относительно вертикальной оси симметрии под углом наклона, большим с наветренной стороны, чем с подветренной, троссовые фермы, образованные несущими и натяжными поясами, соединенными между собой параллельными подвесками и снабженными по концам анкерными устройствами, балку жесткости, подвешенную с несущим поясом и установленную на опоры, согласно изобретению геометрические параметры элементов конструкции вантового моста рассчитывают на их укорочение, на выбранную пониженную температуру.
Окончательно рассматривая двухфакторное воздействие на конструкции вантовых мостов в регионах с сезонным преимуществом пониженных температур, а также рассматривая возведение протяженных конструкций, приходим к выводу, о необходимости производства дополнительных расчетов на укорочение, например, со стандартной температуры (Тст=+20°С), на выбранную температуру, например, (Т=-20°С), с интервалом рассчитываемой температуры (ΔT=40°С).
Более детально рассматриваем (см. фиг.1) реальную конструкцию, эксплуатируемую в регионе со следующими климатическими параметрами (в городе Казань). Согласно региону строительства (см. раздел климатология, СНиП - 2.03.01-84, Строительные нормы и правила) температура воздуха (рассматриваемого региона) наиболее холодной пятидневки равна: -32°С. А средняя максимальная температура воздуха наиболее теплого месяца равна: +27.4°С. Тогда получающиеся геометрические параметры треугольника (см. фиг.2, 3), имеют параметры при нестандартной температуре (Тст=+20°С):
L1=88.18 м;
S1=79.16 м;
H1=38.85 м.
В пересчете (по вышеприведенным формулам 1, 2, 3 величиной: , относительного укорочения) и на выбранную температуру, например минус 30°С (Т=-30°С), имеем нижеследующие величины:
L2=88.13 м;
S2=79.11 м;
Н2=38.82 м;
где принятые обозначения L - длина ванты, Н - превышение верхней части ванты над нижней и S - расстояние от геометрического центра пилона до места крепления. Тогда получаемая разность по высоте равна:
H1-H2=3 cм.
В соответствии с нормативными предписаниями (см. СНиП - 2.01.01-82 и СНиП - 2.03.01 - 84, Строительные нормы и правила) строительство крупных сооружений ведется с деформационными измерениями и с геодезическим сопровождением этапов строительства, а также геодезическим контролем законченных этапов монтажа и строительства. И под среднестатистической величиной просадки конструкции понимается ее прогиб (быстропротекающая во времени деформация конструкции с момента монтажа на момент ее полной эксплуатации). В рассматриваемом реальном примере среднестатистическая величина просадки составляет 4 см (по отчету геодезических измерений).
Тогда изменение геометрии конструкции с момента монтажа на момент ее полной эксплуатации рассчитывается в нижеследующем, а именно (см. фиг.4): ΔZ=ΔН+просадка, где в итоге: ΔZ=3 cм + 4 см=7 см. То есть вследствие просадки, а также расчетами на укорочение получаем ожидаемую величину прогиба балки пролетного строения моста. И полученную величину (ΔZ) считаем необходимо учитывать в процессе монтажных работ, которая означает ориентировку анкерного приспособления на заведомо завышенный угол в установке крепления. То есть анкерное приспособление должно ориентироваться не на геометрический центр канала пилона, а выше (например, в рассматриваемом реальном примере на 7 см). Тогда расчетная геометрия конструкции будет более соответствовать ее истинной фигуре, причем на выбранную пониженную температуру, поскольку, как было отмечено ранее, расчет производится на момент усиления концентрации механических напряжений при пониженных температурах полагая, что истинная фигура (геометрии конструкции) способствует правильному распределению нагрузок. А изгибающий момент (см. фиг.2, в пониженных температурах) будет существенно уменьшенным.
В конечном итоге, отличительные особенности предлагаемого способа выражаются в нижеследующем. Из вышеописанного следует, что необходимы предварительные расчеты (перед монтажом анкерных приспособлений) на изменение геометрии конструкции исходя из того, что геометрия конструкции должна соответствовать получающейся ее истинной фигуре (а именно на момент эксплуатации). Достигается результат учетом укорочений элементов конструкции, а также суммированием среднестатической величины просадки конструкции, при этом считая «предельным моментом» (выбранную) пониженную температуру. В целом расчеты элементов конструкции, в существенном отличии, выполняются не на удлинение, а на укорочение. И на момент монтажа анкерных приспособлений (с жесткой анкеровкой и ориентированный на сквозной канал пилона), при этом обеспечивая заведомо (расчетный) угол завышения (который оказывается выше геометрического центра сквозного канала пилона). Тогда посредством компьютерного моделирования (геометрии конструкции) с расчетами на геометрическую изменность конструкции, в предлагаемом способе, производится ориентировка в монтаже анкерных приспособлений, без угловых измерений, в линейных величинах. То есть получающийся треугольник рассчитывают только по сторонам и на укорочения. Кроме того, линейная величина завышения угла крепления в ориентировании монтажа анкерного приспособления позволяет точно производить ориентировку при монтаже, поскольку в угловой величине получается малый угол (завышения), достаточно трудно реализуемый, в малых угловых измерениях. А в предлагаемой линейной величине легко реализуем лазерным целеуказателем, а также электронным тахометром посредством координирования на пленочный отражатель.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КОРРЕКТИРОВКИ ИЗМЕРЕНИЙ ПРИ ДЕТАЛЬНЫХ РАЗБИВОЧНЫХ РАБОТАХ НА ВЫСОКИХ МОНТАЖНЫХ ГОРИЗОНТАХ | 2004 |
|
RU2269095C2 |
СПОСОБ ПРОИЗВОДСТВА КООРДИНАТНЫХ ИСПОЛНИТЕЛЬНЫХ СЪЕМОК | 2004 |
|
RU2267745C1 |
СПОСОБ ПРОИЗВОДСТВА РАЗБИВОЧНЫХ РАБОТ | 2000 |
|
RU2176778C1 |
СПОСОБ КОНТРОЛЯ ВЕРТИКАЛЬНОСТИ ОБСАДНОЙ ТРУБЫ | 1997 |
|
RU2144656C1 |
УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ | 1999 |
|
RU2199622C2 |
УСТРОЙСТВО ПОДВЕСКИ ЧУВСТВИТЕЛЬНЫХ ЭЛЕМЕНТОВ | 1997 |
|
RU2138015C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЖЕЛЕЗОБЕТОННЫХ БАЛОК ПРОЛЕТНЫХ СТРОЕНИЙ ЭКСПЛУАТИРУЕМЫХ АВТОДОРОЖНЫХ МОСТОВ ПО ИХ ПРОГИБАМ | 2020 |
|
RU2767165C2 |
ДЕФОРМАЦИОННЫЙ ШОВ | 2015 |
|
RU2596847C1 |
СПОСОБ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ СКВАЖИН | 2005 |
|
RU2320849C2 |
СПОСОБ СЕЙСМИЧЕСКОЙ РАЗВЕДКИ ПРИ ПОИСКЕ УГЛЕВОДОРОДОВ И СЕЙСМИЧЕСКИЙ КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2010 |
|
RU2431868C1 |
Изобретение относится к строительству вантовых мостов. Способ геометрического обеспечения расчетного угла крепления ванты пролетному строению моста, включающего опоры, пилоны, ванты с анкерными устройствами, балку жесткости, заключается в том, что при выполнении монтажных работ рассчитывают изменение геометрических параметров элементов конструкции на их укорочение с учетом влияния пониженной температуры региона и устанавливают анкерное устройство под большим углом, чем расчетный угол. Величину завышения расчетного угла задают линейной величиной ΔZ выше геометрического центра сквозного канала пилона, например, электронным тахеометром согласно уравнению ΔZ=ΔН+просадка, где ΔН - разность по высоте закрепления верхних частей вант при относительном изменении длины в интервале изменения температуры; просадка - среднестатистическая величина просадки по отчету геодезических измерений. Технический результат - повышение вибрационной прочности и износостойкости узлов креплений вант с пролетным строением моста. 4 ил.
Способ геометрического обеспечения расчетного угла крепления ванты пролетному строению моста, включающего опоры, пилоны, ванты с анкерными устройствами, балку жесткости, отличающийся тем, что при выполнениях монтажных работ рассчитывают изменение геометрических параметров элементов конструкции на их укорочение, с учетом влияния пониженной температуры региона и устанавливают анкерное устройство под большим углом, чем расчетный угол, при этом величину завышения расчетного угла задают линейной величиной ΔZ выше геометрического центра сквозного канала пилона, например, электронным тахеометром, согласно уравнению:
ΔZ=ΔН+просадка, где
ΔН - разность по высоте закрепления верхних частей вант при относительном изменении длины в интервале изменения температуры;
просадка - среднестатистическая величина просадки по отчету геодезических измерений.
Устройство для регулирования усилия в кабеле висячего моста | 1986 |
|
SU1451201A1 |
СВЯЗЬ ДЛЯ СОЗДАНИЯ В ВИСЯЧИХ КОНСТРУКЦИЯХ ПОСТОЯННОГО ПРИ ТЕМПЕРАТУРНЫХ И ДРУГИХ ПЕРЕМЕЩЕНИЯХ РАСПОРА | 2000 |
|
RU2186899C2 |
Многопролетный вантовый трубопроводный переход | 1990 |
|
SU1740525A1 |
Двухпоясной висячий мост и способ его возведения | 1984 |
|
SU1214816A1 |
КАЧУРИН В.К | |||
и др | |||
Проектирование висячих и вантовых мостов | |||
- М.: Транспорт, 1971, с.151-156 | |||
ФРЕЙ ОТТО и др | |||
Тентовые и вантовые строительные конструкции | |||
- М.: Издательство литературы по строительству, 1970, с.165 | |||
СМИРНОВ В.А | |||
Висячие мосты больших пролетов | |||
- М.: Высшая школа, 1975, с.85-88. |
Авторы
Даты
2010-07-27—Публикация
2007-10-24—Подача