СПОСОБ ОБРАБОТКИ ТЕРМИЧЕСКИ НЕСТОЙКИХ МАТЕРИАЛОВ ХОЛОДНОЙ ПЛАЗМЕННОЙ СТРУЕЙ Российский патент 2010 года по МПК C23C4/12 H05H1/24 

Описание патента на изобретение RU2396369C2

Изобретение относится к области плазменной модификации поверхности термически нестойких материалов при атмосферном давлении и может быть использовано при гидрофилизации/гидрофобизации и повышении адгезионных свойств полимеров, текстиля, бумаги и т.д.

Сущность изобретения заключается в модификации поверхностей термически нестойких материалов при атмосферном давлении за счет использования холодных (близких к комнатной температуре), но химически активных плазменных струй в атмосферном воздухе.

Одним из эффективных способов плазмохимической обработки термически нестойких материалов при атмосферном давлении (например, полимерных пленок с целью придания им гидрофильных свойств, улучшающих качество печати) является их обработка неравновесной плазмой непосредственно в зоне разряда. При этом в газоразрядной плазме происходит возбуждение и диссоциация газообразных соединений с формированием различных радикалов, активно воздействующих на обрабатываемую поверхность.

Наиболее распространенный способ плазмохимической обработки (аналог) состоит в использовании барьерного разряда, при котором электрический ток проходит сквозь обрабатываемый материал (Патент США 5,403,453, кл. H05F 3/00 1995).

Общим недостатком известного и других ему подобных способов является невозможность обработки проводящих материалов, а также диэлектрических материалов с толщиной более 1 мм. Кроме того, прохождение электрического тока через тонкий обрабатываемый материал приводит к его электрическому пробою, что создает в материале большое число пор и приводит к его порче.

Наиболее близким к изобретению по технической сущности (прототипом) является способ модификации поверхностей с использованием плазменной струи, создаваемой газоразрядной камерой, питаемой радиочастотным источником с частотой напряжения 13.56 МГц и прокачиваемой газовым потоком, содержащим большое количество гелия (J.Park, I.Henins, Н.W.Herrmann, et al., Discharge Phenomena of an Atmospheric Pressure Radio-Frequency Capacitive Plasma Source, "Journal of Applied Physics" 89, 20-28 (2001)).

Недостатком известного способа является невозможность создания холодной (с температурой, близкой к комнатной) неравновесной плазмы в потоке воздуха, что делает его непригодным для модификации термически нестойких поверхностей непосредственно в условиях атмосферного воздуха. Кроме того, гелий очень дорогой газ и его использование в известном способе приводит к сильному удорожанию процесса плазменной модификации.

Техническим результатом изобретения является упрощение и снижение стоимости способа холодной обработки термически нестойких материалов при атмосферном давлении за счет использования неравновесной плазменной струи, создаваемой газовым разрядом непосредственно в потоке воздухе.

Этот технический результат достигается путем усовершенствования известного способа обработки термически нестойких материалов холодной плазменной струей, которую формируют путем пропускания потока газа через зону электрического разряда с последующим ее выносом за зону разряда на обрабатываемую поверхность.

Усовершенствование изобретения заключается в том, что в качестве плазмообразующего газа используется атмосферный воздух, плазму получают в стационарном тлеющем разряде атмосферного давления, который создают на выходе потока газа из камеры в межэлектродных промежутках, образованных пластинчатыми анодами и штыревыми катодами, расположенными напротив кромок анодных пластин, обращенных к выходу камеры.

Сущность изобретения поясняется чертежами, где на фиг.1 указана схема обработки полимерной пленки, а на фиг.2 показана электродная система для создания холодной плазменной струи.

Газоразрядная камера выполнена в форме прямоугольного параллелепипеда, содержащего диэлектрические стенки 1, внутри которых размещена электродная система из секционированных катода 2 (фиг.2) и анода 3, нагруженных на балластные сопротивления 4. Секции анода выполнены в форме тонких пластин. Площадь анодных секций определяется сортом плазмообразующего газа. Секции катода выполнены в форме штырей или тонких игл, ориентированных перпендикулярно потоку и расположенных в плоскости, касающейся нижней по потоку границы анодных секций. Электроды установлены в камере таким образом, что их межэлектродные промежутки расположены непосредственно на выходе газового потока из камеры. Расстояние между катодными секциями не превышает межэлектродное расстояние. При подаче на клемму 5 высокого электрического напряжения между катодом и анодом формируется газовый разряд, плазма 6 которого выносится потоком из полости камеры.

Предложенный способ осуществляют следующим образом. Воздух при атмосферном давлении прокачивают между катодом 2 и анодом 3, на которые подают постоянное электрическое напряжение 15-35 кВ для возбуждения стационарного тлеющего разряда. За счет большой скорости воздушного потока, варьируемой в пределах 30-70 м/с, и особенностей геометрии предложенной конструкции электродной системы (штыри катода смещены к кромкам анодных пластин, обращенных к выходу потока воздуха из газоразрядной камеры) газоразрядная плазма выносится из межэлектродного промежутка, что приводит к созданию в свободном пространстве вне камеры струи химически активной, но холодной плазмы, направляемой на неподвижный или движущийся обрабатываемый материал 7. В результате воздействия химически активной плазменной струи на поверхность материала происходит его модификация. Струя плазмы 6 и/или обрабатываемый материал 7 перемещаются друг относительно друга с нужной скоростью. Длительность экспозиции материала плазменной струей определяется расчетным путем и зависит от свойств материала и типа модификации поверхности. Возможность использования окружающего атмосферного воздуха в качестве плазмообразующего газа является существенным преимуществом предложенного способа, позволяющим упростить процесс обработки и снизить его стоимость.

Похожие патенты RU2396369C2

название год авторы номер документа
ПРИМЕНЕНИЕ НЕРАВНОВЕСНОЙ НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЕННОЙ СТРУИ ДЛЯ СТЕРИЛИЗАЦИИ ТЕРМИЧЕСКИ НЕСТОЙКИХ МАТЕРИАЛОВ 2007
  • Акишев Юрий Семенович
  • Грушин Михаил Евгеньевич
  • Трушкин Николай Иванович
RU2398598C2
ГАЗОРАЗРЯДНАЯ КАМЕРА ДЛЯ СОЗДАНИЯ НИЗКОТЕМПЕРАТУРНОЙ НЕРАВНОВЕСНОЙ ПЛАЗМЫ 2007
  • Акишев Юрий Семенович
  • Грушин Михаил Евгеньевич
  • Трушкин Николай Иванович
RU2370924C2
Газоразрядное устройство для обработки плазмой при атмосферном давлении поверхности биосовместимых полимеров 2020
  • Семенов Александр Петрович
  • Балданов Баир Батоевич
  • Ранжуров Цыремпил Валерьевич
RU2751547C1
СПОСОБ СТЕРИЛИЗАЦИИ ГАЗОРАЗРЯДНОЙ ПЛАЗМОЙ АТМОСФЕРНОГО ДАВЛЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2016
  • Семенов Александр Петрович
  • Балданов Баир Батоевич
  • Ранжуров Цыремпил Валерьевич
  • Норбоев Чингис Норбоевич
RU2638569C1
ИСТОЧНИК НЕРАВНОВЕСНОЙ АРГОНОВОЙ ПЛАЗМЫ НА ОСНОВЕ ОБЪЕМНОГО ТЛЕЮЩЕГО РАЗРЯДА АТМОСФЕРНОГО ДАВЛЕНИЯ 2019
  • Семенов Александр Петрович
  • Балданов Баир Батоевич
  • Ранжуров Цыремпил Валерьевич
RU2705791C1
СПОСОБ НЕПРЕРЫВНОГО ПОЛУЧЕНИЯ ГРАФЕНОВ 2014
  • Амиров Равиль Хабибулович
  • Шавелкина Марина Борисовна
  • Киселев Виктор Иванович
  • Катаржис Владимир Александрович
  • Юсупов Дамир Ильдусович
RU2556926C1
СПОСОБ УПРОЧНЕНИЯ ПОЛИПРОПИЛЕНОВОЙ НИТИ 2010
  • Абдуллин Ильдар Шаукатович
  • Сергеева Екатерина Александровна
  • Абдуллина Венера Хайдаровна
RU2421556C1
Установка плазменного напыления покрытий 2020
  • Кузьмин Виктор Иванович
  • Ковалев Олег Борисович
  • Гуляев Игорь Павлович
  • Сергачёв Дмитрий Викторович
  • Ващенко Сергей Петрович
  • Заварзин Александр Геннадьевич
  • Шмыков Сергей Никитич
RU2753844C1
Способ работы плазменного источника ионов и плазменный источник ионов 2015
  • Тимеркаев Борис Ахунович
  • Исрафилов Данис Ирекович
RU2620603C2
ГЕНЕРАТОР ОБЪЕМНОЙ ГАЗОРАЗРЯДНОЙ ПЛАЗМЫ 2000
  • Семенов А.П.
  • Шаданов А.В.
  • Шулунов В.Р.
RU2175469C1

Иллюстрации к изобретению RU 2 396 369 C2

Реферат патента 2010 года СПОСОБ ОБРАБОТКИ ТЕРМИЧЕСКИ НЕСТОЙКИХ МАТЕРИАЛОВ ХОЛОДНОЙ ПЛАЗМЕННОЙ СТРУЕЙ

Изобретение относится к способу обработки термически нестойких материалов холодной плазменной струей и может быть использовано при гидрофилизации/гидрофобизации и повышении адгезионных свойств полимеров, текстиля, бумаги и других материалов. Способ включает формирование плазменной струи путем пропускания потока газа через зону электрического разряда. В качестве плазмообразующего газа используют атмосферный воздух. Плазму получают в стационарном тлеющем разряде атмосферного давления, который создают посредством системы электродов в потоке газа в межэлектродных промежутках. Полученную холодную плазменную струю выносят за зону разряда на обрабатываемую поверхность. Для создания плазмы используют систему из секционированных катода и анода, в которой секции анода выполнены в форме тонких пластин, а секции катода выполнены в форме штырей или тонких игл, ориентированных перпендикулярно потоку газа и расположенных в плоскости, касающейся нижней по потоку границы анодных секций, а межэлектродные промежутки расположены непосредственно на выходе газового потока из газоразрядной камеры. В результате достигается упрощение технологии обработки материалов и снижение стоимости за счет использования неравновесной плазменной струи, создаваемой газовым разрядом непосредственно в потоке воздуха. 2 ил.

Формула изобретения RU 2 396 369 C2

Способ обработки термически нестойких материалов холодной плазменной струей, включающий формирование плазменной струи путем пропускания потока газа через зону электрического разряда, при этом в качестве плазмообразующего газа используют атмосферный воздух, плазму получают в стационарном тлеющем разряде атмосферного давления, который создают посредством системы электродов в потоке газа в межэлектродных промежутках, отличающийся тем, что полученную холодную плазменную струю выносят за зону разряда на обрабатываемую поверхность, при этом для создания плазмы используют систему из секционированных катода и анода, в которой секции анода выполнены в форме тонких пластин, а секции катода выполнены в форме штырей или тонких игл, ориентированных перпендикулярно потоку газа и расположенных в плоскости, касающейся нижней по потоку границы анодных секций, а межэлектродные промежутки расположены непосредственно на выходе газового потока из газоразрядной камеры.

Документы, цитированные в отчете о поиске Патент 2010 года RU2396369C2

US 5938854 A, 17.08.1999
ЛИСТОВОЙ МАТЕРИАЛ, СПОСОБ УЛУЧШЕНИЯ ХАРАКТЕРИСТИК ПОВЕРХНОСТИ ЛИСТОВОГО МАТЕРИАЛА, СПОСОБ ГЕНЕРИРОВАНИЯ ПЛАЗМЫ ТЛЕЮЩЕГО РАЗРЯДА И УСТРОЙСТВО ДЛЯ ИНИЦИИРОВАНИЯ ПЛАЗМЫ ТЛЕЮЩЕГО РАЗРЯДА 1994
  • Рот Джон Риис
  • Тсай Питер Пинг-Уй
  • Лиу Чаою
  • Вэдсворт Лэрри С.
  • Спенс Поль Д.
  • Ларусси Мунир
RU2154363C2
ГАЗОРАЗРЯДНАЯ КАМЕРА 1996
  • Акишев Юрий Семенович
  • Епхиева Татьяна Семеновна
  • Клушин Виталий Николаевич
  • Напартович Анатолий Петрович
  • Трушкин Николай Иванович
RU2105439C1
УСТРОЙСТВО ДЛЯ ГЕНЕРАЦИИ ПЛАЗМЕННОГО ПОТОКА 2004
  • Гостев Валерий Анатольевич
  • Гостев Кирилл Валерьевич
RU2285358C2
УСТРОЙСТВО ДЛЯ НАНЕСЕНИЯ ПОЛИМЕРНЫХ ПЛЕНОК В ВАКУУМЕ 1991
  • Белов Владимир Григорьевич
  • Иванов Владимир Анатольевич
  • Иванов Валерий Анатольевич
  • Нагоев Теморлан Хусейнович
RU2051200C1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЗАЩИТНО-ДЕКОРАТИВНЫХ ПОКРЫТИЙ В ВАКУУМЕ ИОННО-ПЛАЗМЕННЫМ НАПЫЛЕНИЕМ 1993
  • Пустобаев А.А.
RU2065890C1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
J.Park, I.Henins, H.W.Herrmann, et al., Discharge Phenomena of an Atmospheric Pressure Radio-Frequency Capacitive Plasma Source, "Journal of Applied Physics 89, 20-28 (2001).

RU 2 396 369 C2

Авторы

Акишев Юрий Семенович

Грушин Михаил Евгеньевич

Трушкин Николай Иванович

Даты

2010-08-10Публикация

2007-10-26Подача