Изобретение относится к области плазменной модификации поверхности термически нестойких материалов при атмосферном давлении и может быть использовано при гидрофилизации/гидрофобизации и повышении адгезионных свойств полимеров, текстиля, бумаги и т.д.
Сущность изобретения заключается в модификации поверхностей термически нестойких материалов при атмосферном давлении за счет использования холодных (близких к комнатной температуре), но химически активных плазменных струй в атмосферном воздухе.
Одним из эффективных способов плазмохимической обработки термически нестойких материалов при атмосферном давлении (например, полимерных пленок с целью придания им гидрофильных свойств, улучшающих качество печати) является их обработка неравновесной плазмой непосредственно в зоне разряда. При этом в газоразрядной плазме происходит возбуждение и диссоциация газообразных соединений с формированием различных радикалов, активно воздействующих на обрабатываемую поверхность.
Наиболее распространенный способ плазмохимической обработки (аналог) состоит в использовании барьерного разряда, при котором электрический ток проходит сквозь обрабатываемый материал (Патент США 5,403,453, кл. H05F 3/00 1995).
Общим недостатком известного и других ему подобных способов является невозможность обработки проводящих материалов, а также диэлектрических материалов с толщиной более 1 мм. Кроме того, прохождение электрического тока через тонкий обрабатываемый материал приводит к его электрическому пробою, что создает в материале большое число пор и приводит к его порче.
Наиболее близким к изобретению по технической сущности (прототипом) является способ модификации поверхностей с использованием плазменной струи, создаваемой газоразрядной камерой, питаемой радиочастотным источником с частотой напряжения 13.56 МГц и прокачиваемой газовым потоком, содержащим большое количество гелия (J.Park, I.Henins, Н.W.Herrmann, et al., Discharge Phenomena of an Atmospheric Pressure Radio-Frequency Capacitive Plasma Source, "Journal of Applied Physics" 89, 20-28 (2001)).
Недостатком известного способа является невозможность создания холодной (с температурой, близкой к комнатной) неравновесной плазмы в потоке воздуха, что делает его непригодным для модификации термически нестойких поверхностей непосредственно в условиях атмосферного воздуха. Кроме того, гелий очень дорогой газ и его использование в известном способе приводит к сильному удорожанию процесса плазменной модификации.
Техническим результатом изобретения является упрощение и снижение стоимости способа холодной обработки термически нестойких материалов при атмосферном давлении за счет использования неравновесной плазменной струи, создаваемой газовым разрядом непосредственно в потоке воздухе.
Этот технический результат достигается путем усовершенствования известного способа обработки термически нестойких материалов холодной плазменной струей, которую формируют путем пропускания потока газа через зону электрического разряда с последующим ее выносом за зону разряда на обрабатываемую поверхность.
Усовершенствование изобретения заключается в том, что в качестве плазмообразующего газа используется атмосферный воздух, плазму получают в стационарном тлеющем разряде атмосферного давления, который создают на выходе потока газа из камеры в межэлектродных промежутках, образованных пластинчатыми анодами и штыревыми катодами, расположенными напротив кромок анодных пластин, обращенных к выходу камеры.
Сущность изобретения поясняется чертежами, где на фиг.1 указана схема обработки полимерной пленки, а на фиг.2 показана электродная система для создания холодной плазменной струи.
Газоразрядная камера выполнена в форме прямоугольного параллелепипеда, содержащего диэлектрические стенки 1, внутри которых размещена электродная система из секционированных катода 2 (фиг.2) и анода 3, нагруженных на балластные сопротивления 4. Секции анода выполнены в форме тонких пластин. Площадь анодных секций определяется сортом плазмообразующего газа. Секции катода выполнены в форме штырей или тонких игл, ориентированных перпендикулярно потоку и расположенных в плоскости, касающейся нижней по потоку границы анодных секций. Электроды установлены в камере таким образом, что их межэлектродные промежутки расположены непосредственно на выходе газового потока из камеры. Расстояние между катодными секциями не превышает межэлектродное расстояние. При подаче на клемму 5 высокого электрического напряжения между катодом и анодом формируется газовый разряд, плазма 6 которого выносится потоком из полости камеры.
Предложенный способ осуществляют следующим образом. Воздух при атмосферном давлении прокачивают между катодом 2 и анодом 3, на которые подают постоянное электрическое напряжение 15-35 кВ для возбуждения стационарного тлеющего разряда. За счет большой скорости воздушного потока, варьируемой в пределах 30-70 м/с, и особенностей геометрии предложенной конструкции электродной системы (штыри катода смещены к кромкам анодных пластин, обращенных к выходу потока воздуха из газоразрядной камеры) газоразрядная плазма выносится из межэлектродного промежутка, что приводит к созданию в свободном пространстве вне камеры струи химически активной, но холодной плазмы, направляемой на неподвижный или движущийся обрабатываемый материал 7. В результате воздействия химически активной плазменной струи на поверхность материала происходит его модификация. Струя плазмы 6 и/или обрабатываемый материал 7 перемещаются друг относительно друга с нужной скоростью. Длительность экспозиции материала плазменной струей определяется расчетным путем и зависит от свойств материала и типа модификации поверхности. Возможность использования окружающего атмосферного воздуха в качестве плазмообразующего газа является существенным преимуществом предложенного способа, позволяющим упростить процесс обработки и снизить его стоимость.
название | год | авторы | номер документа |
---|---|---|---|
ПРИМЕНЕНИЕ НЕРАВНОВЕСНОЙ НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЕННОЙ СТРУИ ДЛЯ СТЕРИЛИЗАЦИИ ТЕРМИЧЕСКИ НЕСТОЙКИХ МАТЕРИАЛОВ | 2007 |
|
RU2398598C2 |
ГАЗОРАЗРЯДНАЯ КАМЕРА ДЛЯ СОЗДАНИЯ НИЗКОТЕМПЕРАТУРНОЙ НЕРАВНОВЕСНОЙ ПЛАЗМЫ | 2007 |
|
RU2370924C2 |
Газоразрядное устройство для обработки плазмой при атмосферном давлении поверхности биосовместимых полимеров | 2020 |
|
RU2751547C1 |
СПОСОБ СТЕРИЛИЗАЦИИ ГАЗОРАЗРЯДНОЙ ПЛАЗМОЙ АТМОСФЕРНОГО ДАВЛЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2016 |
|
RU2638569C1 |
ИСТОЧНИК НЕРАВНОВЕСНОЙ АРГОНОВОЙ ПЛАЗМЫ НА ОСНОВЕ ОБЪЕМНОГО ТЛЕЮЩЕГО РАЗРЯДА АТМОСФЕРНОГО ДАВЛЕНИЯ | 2019 |
|
RU2705791C1 |
СПОСОБ НЕПРЕРЫВНОГО ПОЛУЧЕНИЯ ГРАФЕНОВ | 2014 |
|
RU2556926C1 |
СПОСОБ УПРОЧНЕНИЯ ПОЛИПРОПИЛЕНОВОЙ НИТИ | 2010 |
|
RU2421556C1 |
Установка плазменного напыления покрытий | 2020 |
|
RU2753844C1 |
Способ работы плазменного источника ионов и плазменный источник ионов | 2015 |
|
RU2620603C2 |
ГЕНЕРАТОР ОБЪЕМНОЙ ГАЗОРАЗРЯДНОЙ ПЛАЗМЫ | 2000 |
|
RU2175469C1 |
Изобретение относится к способу обработки термически нестойких материалов холодной плазменной струей и может быть использовано при гидрофилизации/гидрофобизации и повышении адгезионных свойств полимеров, текстиля, бумаги и других материалов. Способ включает формирование плазменной струи путем пропускания потока газа через зону электрического разряда. В качестве плазмообразующего газа используют атмосферный воздух. Плазму получают в стационарном тлеющем разряде атмосферного давления, который создают посредством системы электродов в потоке газа в межэлектродных промежутках. Полученную холодную плазменную струю выносят за зону разряда на обрабатываемую поверхность. Для создания плазмы используют систему из секционированных катода и анода, в которой секции анода выполнены в форме тонких пластин, а секции катода выполнены в форме штырей или тонких игл, ориентированных перпендикулярно потоку газа и расположенных в плоскости, касающейся нижней по потоку границы анодных секций, а межэлектродные промежутки расположены непосредственно на выходе газового потока из газоразрядной камеры. В результате достигается упрощение технологии обработки материалов и снижение стоимости за счет использования неравновесной плазменной струи, создаваемой газовым разрядом непосредственно в потоке воздуха. 2 ил.
Способ обработки термически нестойких материалов холодной плазменной струей, включающий формирование плазменной струи путем пропускания потока газа через зону электрического разряда, при этом в качестве плазмообразующего газа используют атмосферный воздух, плазму получают в стационарном тлеющем разряде атмосферного давления, который создают посредством системы электродов в потоке газа в межэлектродных промежутках, отличающийся тем, что полученную холодную плазменную струю выносят за зону разряда на обрабатываемую поверхность, при этом для создания плазмы используют систему из секционированных катода и анода, в которой секции анода выполнены в форме тонких пластин, а секции катода выполнены в форме штырей или тонких игл, ориентированных перпендикулярно потоку газа и расположенных в плоскости, касающейся нижней по потоку границы анодных секций, а межэлектродные промежутки расположены непосредственно на выходе газового потока из газоразрядной камеры.
US 5938854 A, 17.08.1999 | |||
ЛИСТОВОЙ МАТЕРИАЛ, СПОСОБ УЛУЧШЕНИЯ ХАРАКТЕРИСТИК ПОВЕРХНОСТИ ЛИСТОВОГО МАТЕРИАЛА, СПОСОБ ГЕНЕРИРОВАНИЯ ПЛАЗМЫ ТЛЕЮЩЕГО РАЗРЯДА И УСТРОЙСТВО ДЛЯ ИНИЦИИРОВАНИЯ ПЛАЗМЫ ТЛЕЮЩЕГО РАЗРЯДА | 1994 |
|
RU2154363C2 |
ГАЗОРАЗРЯДНАЯ КАМЕРА | 1996 |
|
RU2105439C1 |
УСТРОЙСТВО ДЛЯ ГЕНЕРАЦИИ ПЛАЗМЕННОГО ПОТОКА | 2004 |
|
RU2285358C2 |
УСТРОЙСТВО ДЛЯ НАНЕСЕНИЯ ПОЛИМЕРНЫХ ПЛЕНОК В ВАКУУМЕ | 1991 |
|
RU2051200C1 |
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЗАЩИТНО-ДЕКОРАТИВНЫХ ПОКРЫТИЙ В ВАКУУМЕ ИОННО-ПЛАЗМЕННЫМ НАПЫЛЕНИЕМ | 1993 |
|
RU2065890C1 |
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор | 1923 |
|
SU2005A1 |
J.Park, I.Henins, H.W.Herrmann, et al., Discharge Phenomena of an Atmospheric Pressure Radio-Frequency Capacitive Plasma Source, "Journal of Applied Physics 89, 20-28 (2001). |
Авторы
Даты
2010-08-10—Публикация
2007-10-26—Подача