ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ДЕФОРМАЦИИ С ДИСПЕРСИОННЫМИ СТРУКТУРАМИ Российский патент 2010 года по МПК G01L1/16 G01B21/32 

Описание патента на изобретение RU2396526C2

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения деформации.

Известен чувствительный элемент деформации, представляющий собой линию задержки на поверхностных акустических волнах (ПАВ) (Wireless passive SAW identification marks and sensors. L.Reindl, 2-nd Int. Symp. Acoustic wave devices for future mobile communicstion systems, Chiba univ., 2004), состоящий из двух встречно-штыревых преобразователей (ВШП), расположенных на пьезоплате напротив друг друга. Период следования штырей в ВШП равен , λ - длина поверхностной акустической волны, скважность равна 2. В качестве информационного сигнала используется время задержки.

Недостатком этих чувствительных элементов деформации - линий задержки на ПАВ является низкая чувствительность и точность.

Известен также чувствительный элемент деформации, представляющий собой одновходовый резонатор (Зеленка И. Пьезоэлектрические резонаторы на объемных и поверхностных акустических волнах. М.: Мир, 1990, 584 с.), состоящий из ВШП структуры и расположенных по обе стороны от ВШП металлизированных штыревых отражающих структур. Период следования штырей в отражающих структурах равен , λ - длина поверхностной акустической волны, скважность равна 2. В качестве информационного сигнала используется собственная (резонансная частота резонатора). Недостатком этих резонаторов применительно к измерению деформаций является малая девиация частоты и, как следствие, низкая чувствительность и точность.

Наиболее близким по технической сущности к изобретению является чувствительный элемент деформации, представляющий собой дисперсионную линию задержки (Wireless passive SAW identification marks and sensors. L.Reindl, 2-nd Int. Symp. Acoustic wave devices for future mobile communicstion systems, Chiba univ., 2004), состоящий из ВШП и расположенных на пьезоплате с одной стороны от ВШП отражающих структур в виде системы канавок с переменным периодом, образующих дисперсионную структуру. В качестве информационного сигнала используется время задержки. По сравнению с резонаторами и линиями задержки чувствительный элемент деформации с дисперсионными структурами имеет большую чувствительность. Недостатком этих резонаторов применительно к измерению деформаций также является малая девиация информационного сигнала и, как следствие, низкая чувствительность и точность.

Причиной, препятствующей получению указанного ниже технического результата при использовании для измерения деформаций известного чувствительного элемента деформации - дисперсионной линии задержки - прототипа, является следующий его недостаток: абсолютное значение девиации времени задержки ограничено геометрическими размерами пьезоплаты и потерями на распространение ПАВ в материале.

Задачей настоящего изобретения является повышение точности измерения деформации.

Технический результат достигается тем, что в чувствительном элементе деформации с дисперсионными структурами, состоящем из пьезоплаты, на поверхности которой сформированы не менее одного встречно-штыревого преобразователя и не менее двух дисперсионных отражающих структур, использующем в качестве информационного сигнала время задержки отклика чувствительного элемента деформации с дисперсионными структурами, при этом отражающие структуры расположены с двух сторон от встречно-штыревых преобразователей, а в качестве информационного сигнала дополнительно используется центральная частота частотно-модулированного зондирующего сигнала, обеспечивающая максимальное значение отклика по амплитуде чувствительного элемента деформации с дисперсионными структурами.

Расположение дисперсионных отражающих структур с двух сторон от ВШП позволяет использовать в два раза больше акустической энергии по сравнению с односторонним расположением дисперсионных отражающих структур. Дополнительное использование в качестве информационного сигнала центральной частоты частотно-модулированного зондирующего сигнала, обеспечивающего максимальное значение отклика по амплитуде чувствительного элемента деформации с дисперсионными структурами, позволяет повысить точность измерений за счет комплексирования двух информационных сигналов - центральной частоты и времени задержки.

Проведенный заявителем анализ уровня техники установил, что аналоги, характеризующиеся совокупностями признаков, тождественными всем признакам заявленного устройства - чувствительного элемента деформации с дисперсионными структурами, отсутствуют, следовательно, заявленное изобретение соответствует условию "новизна".

В настоящее время авторам неизвестны чувствительные элементы деформации с дисперсионными структурами, которые позволяли бы проводить измерение деформации с такой точностью, которую обеспечивает предлагаемая конструкция чувствительного элемента деформации с дисперсионными структурами.

Результаты поиска известных технических решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипов признаками заявленного изобретения, показали, что они не следуют явным образом из уровня техники.

Из определенного заявителем уровня техники не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения преобразований на достижение указанного технического результата, следовательно, заявленное изобретение соответствует "изобретательскому уровню".

Сущность изобретения поясняется чертежом, где приведена структура чувствительного элемента деформации с дисперсионными структурами.

Чувствительный элемент деформации с дисперсионными структурами (см. чертеж) состоит из пьезоплаты 1, на которой сформированы ВШП 3 и отражающие дисперсионные структуры 2. Отражающие дисперсионные структуры 2 выполнены в виде периодической системы канавок с переменным периодом.

Пьезоплата 1 может быть выполнена из пьезоэлектрического материала (например, кварца).

При этом отражающие дисперсионные структуры 2 расположены с двух сторон от встречно-штыревых преобразователей 3, а в качестве информационного сигнала дополнительно используется форма, а в частном случае центральная частота частотно-модулированного зондирующего сигнала, обеспечивающая максимальное значение отклика по амплитуде чувствительного элемента деформации с дисперсионными структурами. Время задержки отклика чувствительного элемента деформации с дисперсионными структурами может являться идентификатором чувствительного элемента деформации с дисперсионными структурами.

Формирование ВШП реализовано по технологии фотолитографии и травления [1, 2]. Формирование канавок отражающих дисперсионных структур 2 реализовано по технологии травления через маску [2].

Устройство работает следующим образом.

При деформации пьезоплаты 1 изменяются геометрический размер штырей (электродов) ВШП 3, расстояния между электродами, ширина и период следования канавок отражающих дисперсионных структур 2. В соответствии с геометрическими размерами [1, 2] изменяются время задержки отраженного сигнала и частотные свойства отражающих дисперсионных структур 2.

В качестве зондирующего сигнала при использовании дисперсионных структур используются частотно-модулированные сигналы, структура которых соответствует топологии отражающих дисперсионных структур 2 [2]. При изменении топологии отражающих дисперсионных структур 2 будет изменяться и структура соответствующих частотно-модулированных сигналов. Наиболее часто используются линейно-частотно-модулированные (ЛЧМ) сигналы [2].

При поступлении зондирующего электрического сигнала от внешнего источника (на чертеже не показан) на ВШП 3 под действием пьезоэлектрического эффекта формируется ПАВ. Сформированная ВШП 3 ПАВ распространяется в двух направлениях от ВШП 3. Дойдя до отражающих дисперсионных структур 2, ПАВ отражается и возвращается на ВШП 3. Расположение дисперсионных отражающих структур 2 с двух сторон от ВШП 3 позволяет использовать в два раза больше акустической энергии по сравнению с односторонним расположением дисперсионных отражающих структур, т.е. в два раза увеличить амплитуду отклика чувствительного элемента деформации с дисперсионными структурами. Взаимодействие зондирующего ЛЧМ электрического сигнала с дисперсионными отражающими структурами подробно объясняется в [2].

В случае если деформация чувствительного элемента деформации с дисперсионными структурами в области расположения ВШП 3 и отражающих дисперсионных структур 2 линейна, то наиболее значительно будет изменяться центральная частота частотно-модулированного зондирующего сигнала (например, ЛЧМ), обеспечивающая максимальное значение отклика по амплитуде чувствительного элемента деформации с дисперсионными структурами. В случае если деформация чувствительного элемента деформации с дисперсионными структурами в области расположения ВШП 3 и отражающих дисперсионных структур 2 нелинейна, то будет изменяться форма частотно-модулированного зондирующего сигнала, обеспечивающая максимальное значение отклика по амплитуде чувствительного элемента деформации с дисперсионными структурами. В частности, в случае нелинейной деформации формой частотно-модулированного зондирующего сигнала, обеспечивающей максимальное значение отклика по амплитуде чувствительного элемента деформации с дисперсионными структурами, будет уже не линейно-частотная модуляция, а нелинейно-частотная модуляция. При этом форма нелинейной частотной модуляции для каждой деформации чувствительного элемента деформации с дисперсионными структурами будет однозначной функцией деформации.

В качестве информационного сигнала используется время задержки отклика чувствительного элемента деформации с дисперсионными структурами. При деформации чувствительного элемента деформации с дисперсионными структурами время задержки будет меняться не более чем на 1% от величины времени задержки в недеформированном состоянии. В случае если топология чувствительного элемента деформации с дисперсионными структурами обеспечивает время задержки в недеформированном состоянии больше, чем девиация величины времени задержки в деформированном состоянии, то величина времени задержки является идентификационным признаком данного конкретного чувствительного элемента деформации с дисперсионными структурами. Время задержки отклика чувствительного элемента деформации с дисперсионными структурами может являться идентификатором чувствительного элемента деформации с дисперсионными структурами. Таким образом, время задержки может обеспечить идентификацию чувствительного элемента деформации с дисперсионными структурами.

Дополнительно в качестве информационного сигнала используется форма, а в частном случае центральная частота, частотно-модулированного зондирующего сигнала (например, ЛЧМ), обеспечивающая максимальное значение отклика по амплитуде чувствительного элемента деформации с дисперсионными структурами. Наличие двух измерений позволяет повысить точность определения деформации за счет комплексирования двух информационных сигналов - формы (например, центральной частоты) и времени задержки.

Форма, или в частном случае величина центральной частоты частотно-модулированного зондирующего сигнала (например, ЛЧМ), обеспечивающая максимальное значение отклика по амплитуде чувствительного элемента деформации с дисперсионными структурами, измеряется, например, по амплитудно-частотной характеристике (например, с использованием сетевого анализатора Agilent Е5070В) [2]. Время задержки измеряется, например, с помощью осциллографа. На основе градуировочной зависимости (форма, центральная частота, время задержки - деформация) изменению формы, центральной частоты и времени задержки можно соотнести величину деформации.

Таким образом, предложенный чувствительный элемент деформации с дисперсионными структурами является высокоточным устройством для измерения деформации.

Библиография

1. Зеленка И. Пьезоэлектрические резонаторы на объемных и поверхностных акустических волнах. М.: Мир, 1990, 584 с.

2. Морган Д. Устройства обработки сигналов на поверхностных акустических волнах / Пер. с англ. М.: Радио и связь, 1990, 416 с.

Похожие патенты RU2396526C2

название год авторы номер документа
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ДЛЯ ИЗМЕРЕНИЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ 2010
  • Анцев Георгий Владимирович
  • Богословский Сергей Владимирович
  • Сапожников Геннадий Анатольевич
RU2435148C1
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ 2010
  • Анцев Георгий Владимирович
  • Богословский Сергей Владимирович
  • Сапожников Геннадий Анатольевич
  • Бланк Илья Александрович
  • Качкина Екатерина Валерьевна
RU2422774C1
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ 2012
  • Анцев Георгий Владимирович
  • Анцев Иван Георгиевич
  • Богословский Сергей Владимирович
  • Сапожников Геннадий Анатольевич
RU2494358C1
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН 2009
  • Анцев Георгий Владимирович
  • Богословский Сергей Владимирович
  • Сапожников Геннадий Анатольевич
  • Умнов Александр Алексеевич
  • Качкина Екатерина Валерьевна
RU2418276C1
ГИРОСКОП-АКСЕЛЕРОМЕТР 2008
  • Анцев Георгий Владимирович
  • Богословский Сергей Владимирович
  • Сапожников Геннадий Анатольевич
RU2381510C1
СПОСОБ ИЗМЕРЕНИЯ ДЕФОРМАЦИИ ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ 2012
  • Анцев Георгий Владимирович
  • Анцев Иван Георгиевич
  • Богословский Сергей Владимирович
  • Сапожников Геннадий Анатольевич
  • Виноградов Анатолий Валерианович
  • Степанец Мария Вадимовна
RU2487326C1
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ДЛЯ ИЗМЕРЕНИЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ 2011
  • Богословский Сергей Владимирович
  • Сапожников Геннадий Анатольевич
  • Анцев Иван Георгиевич
  • Жежерин Александр Ростиславович
  • Смирнов Юрий Геннадьевич
  • Ермаков Павел Игоревич
RU2457450C1
СПОСОБ ФОРМИРОВАНИЯ ЗАПРОСНОГО СИГНАЛА ДЛЯ ДАТЧИКА НА ПАВ С ОТРАЖАЮЩИМИ СТРУКТУРАМИ 2012
  • Анцев Георгий Владимирович
  • Анцев Иван Георгиевич
  • Богословский Сергей Владимирович
  • Сапожников Геннадий Анатольевич
RU2488921C1
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ 2015
  • Анцев Иван Георгиевич
  • Сапожников Геннадий Анатольевич
  • Богословский Сергей Владимирович
  • Терехин Константин Владимирович
RU2590228C1
СПОСОБ ИЗМЕРЕНИЯ ВЛАЖНОСТИ 2012
  • Анцев Георгий Владимирович
  • Анцев Иван Георгиевич
  • Богословский Сергей Владимирович
  • Сапожников Геннадий Анатольевич
RU2492461C1

Реферат патента 2010 года ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ДЕФОРМАЦИИ С ДИСПЕРСИОННЫМИ СТРУКТУРАМИ

Чувствительный элемент деформации с дисперсионными структурами относится к области измерительной техники и может быть использован в приборостроении и машиностроении для измерения деформации. Техническим результатом является повышение точности измерения деформации за счет использования информации о центральной частоте устройства. Чувствительный элемент деформации с дисперсионными структурами состоит из пьезоплаты, на поверхности которой сформированы не менее одного встречно-штыревого преобразователя и не менее двух дисперсионных отражающих структур, использует в качестве информационного сигнала время задержки отклика чувствительного элемента деформации с дисперсионными структурами. При этом отражающие структуры расположены с двух сторон от встречно-штыревых преобразователей, а в качестве информационного сигнала дополнительно используется форма или центральная частота частотно-модулированного зондирующего сигнала, обеспечивающая максимальное значение отклика по амплитуде чувствительного элемента деформации с дисперсионными структурами. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 396 526 C2

1. Чувствительный элемент деформации с дисперсионными структурами, состоящий из пьезоплаты, на поверхности которой сформированы не менее одного встречно-штыревого преобразователя и не менее двух дисперсионных отражающих структур, использующий в качестве информационного сигнала время задержки отклика чувствительного элемента деформации с дисперсионными структурами, отличающийся тем, что отражающие структуры расположены с двух сторон от встречно-штыревых преобразователей, а в качестве информационного сигнала дополнительно используется форма или центральная частота частотно модулированного зондирующего сигнала, обеспечивающая максимальное значение отклика по амплитуде чувствительного элемента деформации с дисперсионными структурами.

2. Чувствительный элемент деформации с дисперсионными структурами по п.1, отличающийся тем, что время задержки отклика чувствительного элемента деформации с дисперсионными структурами является идентификатором чувствительного элемента деформации с дисперсионными структурами.

Документы, цитированные в отчете о поиске Патент 2010 года RU2396526C2

Емкостный преобразователь деформации 1980
  • Назаренко Анатолий Васильевич
  • Лопатин Александр Михайлович
  • Харитонов Олег Борисович
SU851129A1
ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ДЕФОРМАЦИИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1998
  • Зеленцов Ю.А.
  • Козин С.А.
  • Шамраков А.Л.
RU2200300C2
ПРЕОБРАЗОВАТЕЛЬ ДЕФОРМАЦИИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1992
  • Козин С.А.
  • Шамраков А.Л.
RU2077024C1
ИНТЕГРАЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ ДЕФОРМАЦИЙ ЕГИАЗАРЯНА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1988
  • Егиазарян Э.Л.
SU1822245A1
ИНТЕГРАЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ ДЕФОРМАЦИИ И ТЕМПЕРАТУРЫ 1996
  • Козин С.А.
  • Шамраков А.Л.
RU2115897C1
US 5101669 A, 07.04.1992.

RU 2 396 526 C2

Авторы

Анцев Георгий Владимирович

Богословский Сергей Владимирович

Сапожников Геннадий Анатольевич

Даты

2010-08-10Публикация

2008-05-27Подача