Изобретение относится к машиностроению, в частности к составам смазочных материалов для узлов трения как из сплавов на основе железа, так и цветных металлов, а также способам получения подобных составов.
Сущность изобретения: состав содержит смазочный материал, поверхностно-активное вещество, образующее с частицами минерала коллоидный раствор, и измельченный природный минерал с дисперсностью не более 1,0 мкм, содержащий, мас.%: серпентин (лизардит и хризотил) 80-87, хлорит 2-3, магнетит 1-2, амакинит 1-2, кальцит 0,5-1, рентгеноаморфная фаза 9-12. Способ получения: предварительно диспергированный минерал вводят в технологическую жидкость, в которой осуществляют дальнейшее диспергирование состава до наноразмерного уровня, после чего технологическую жидкость удаляют, а оставшийся состав помещают в жидкий смазочный материал, содержащий поверхностно-активное вещество, образующее с частицами минерала коллоидный раствор, проводят окончательную диспергацию минерала с помощью ультразвука, полученную смесь отстаивают, а образовавшуюся над отстоем суспензию используют в качестве присадки к основному смазочному материалу.
Технический результат - использование состава в двигателях, механизмах и устройствах позволяет снизить износ узлов трения в 3-4 раза, уменьшить потери на трение в 3-4 раза, тем самым повысить КПД машин и оборудования, уменьшить расход смазочных материалов, увеличить период между смазочными работами.
Состав может быть использован в качестве добавки к смазочным маслам двигателей внутреннего сгорания, механизмов, устройств, к дизельному топливу или в качестве твердосмазочных материалов, и может найти применение в автомобильном и железнодорожном транспорте, оборудовании морских и речных судов, оборудовании горно-обогатительных комбинатов, в насосном оборудовании газо- и нефтепроводов и т.п.
Известны металлоплакирующие смазочные материалы [Гаркунов Д.Н. Триботехника. Износ и безызносность. М.: Изд-во МСХА, 2001 г., 616 с.], позволяющие сформировать на участках фактического контакта защитные пленки на основе мягких металлов: меди, олова, свинца, цинка, серебра и других. Благодаря формированию пленки уменьшается удельное давление в контакте и интенсивность изнашивания сопряженных поверхностей деталей.
Металлоплакирующие смазочные материалы по фазовому признаку подразделяются на гомогенные и гетерогенные. Первые в качестве присадок содержат растворимые в базовой смазочной среде соединения металлов, вторые содержат металл или его окислы в виде порошков. Однако эти материалы обладают рядом недостатков (зависимость эффективности формирования пленки от концентрации металлов в среде, низкая устойчивость дисперсии металлических порошков, высокая степень чистоты порошков и другие), из-за которых их применение ограничивается главным образом пластичными смазками для определенных узлов трения.
В последние годы появился ряд технических решений [Патент РФ №2043393, С10М 125/04, Бюл. №25 от 10.09.95; Патент РФ №2127299, С10М 125/10, Бюл. №7 от 10.03.99; Патент РФ №2131451, С10М 125/26, Бюл. №16 от 10.06.99; Патент РФ №2179270, F16C 33/14, Бюл. №4 от 20.02.2002; Патент РФ №2179270, F16C 33/14, Бюл. №4 от 20.02.2002], согласно которым в качестве наполнителя твердосмазочных композиций используются слоистые природные гидросиликаты: тальк, серпентин, нефрит, доломит и другие. Наличие порошка указанных соединений в смазочной композиции при определенных условиях ее изготовления и введения между трущимися поверхностями и их приработки приводит к образованию на трущихся металлических поверхностях защитной пленки, существенно уменьшающей их износ. Некоторые авторы полагают, что защитный слой представляет собой сервовитную пленку [Патент РФ №2127299, С10М 125/10, Бюл. №7 от 10.03.99; Патент РФ №2131451, С10М 125/26, Бюл. №16 от 10.06.99].
Благодаря многочисленным экспериментам состав минеральной смеси удалось оптимизировать, и его компоненты отражены в таблице 1. Данный состав практически соответствует композиции [Патент РФ №2179270, F16C 33/14, Бюл. №4 от 20.02.2002].
Однако использование этого технического решения также встречает определенные трудности, связанные с тем, что размер частиц минерала находится в области, существенно превышающий размеры шероховатости, - 10 мкм. Это приводит к ряду отрицательных последствий.
Первым из этих последствий является то, что на стадии приработки частицы подобных размеров могут вызывать тяжелые формы изнашивания приповерхностных слоев, такие как пропахивание, микрорезание и т.д. Очевидно, что это приводит к неоправданно высокой температуре на стадии приработки, повышенному износу и возможности заедания.
Вторым существенным недостатком рассматриваемого технического решения [Патент РФ №2243252, С10М 125/00, Бюл. №36 от 27.12.2004] является неустойчивость получаемой в результате изготовления состава суспензии. При этом основная часть порошка выпадает в осадок и не может быть рационально использована.
Для преодоления указанных недостатков может быть использовано следующее техническое решение в Патенте РФ №2264440, С10М 177/00, Бюл. №32 от 20.11.2005. Его главным отличием является то, что после получения фракции с размером менее 10 мкм, порошок помещается в жидкостной дезинтегратор, в котором размер частиц доводится до значений менее 1 мкм. При этом полученную смесь отстаивают, а образовавшуюся над отстоем суспензию используют в качестве присадки. С помощью подобного технологического приема обеспечивается субмикронная дисперсность частиц минерала, благодаря чему преодолевается первое из отрицательных последствий технического решения в Патенте РФ №2243252, С10М 125/00, Бюл. №36 от 27.12.2004, в котором используются частицы размером до 10 мкм.
Тем не менее, данное техническое решение в Патенте РФ №2264440, С10М 177/00, Бюл. №32 от 20.11.2005 не обеспечивает устранения второго недостатка - неустойчивости получаемой суспензии. Дело в том, что измельчение частиц до субмикронных размеров не предотвращает, а только замедляет процесс осаждения. Поэтому в случае отстаивания смеси основным параметром, определяющим концентрацию частиц в жидкости, является время. При этом скорость седиментации частиц такова, что для осаждения большей части частиц достаточно времени хранения в несколько дней.
Известны методы стабилизации коллоидных растворов, используемых как смазочные композиции, с помощью введения в них поверхностно-активных веществ. В частности, стабилизация присадок к смазочному материалу в виде нанодисперсных металлов, обеспечивающая удовлетворительную седиментационную устойчивость, достигается в результате хемосорбции наночастицами жирных кислот с образованием соответствующих солей [Воробьева С.А., Лавринович Е.А., Мушинский В.В. и др. Трение и износ. 1996 (17). №6, с.827-831]. При этом помимо стабилизации коллоида здесь достигается и общее улучшение антифрикционности за счет увеличения толщины адсорбционного слоя при попадании мицелл на трущиеся поверхности.
Аналогичный подход использован при реализации технического решения, описанного в заявке №2007117786/20(019363) от 09.06.07 (прототип). Введение в жидкий смазочный материал на стадии окончательного диспергирования минерального порошка солей жирных кислот позволило не только стабилизировать образовавшийся при этом коллоидный раствор, но и повысить антифрикционное действие присадки.
Однако при этом остается достаточно сложная проблема достоверного подтверждения и реального использования нанодисперсного уровня диспергирования минерального порошка. Дело в том, что диспергирование с помощью ультразвука в среде жидкого смазочного материала до наноразмерного уровня связано с рядом проблем. К ним относится, в первую очередь, вязкая диссипация энергии ультразвукового излучения, неизбежно возникающая при распространении ультразвуковых волн в вязкой среде, каковой является жидкий смазочный материал. Результатом подобной диссипации является снижение эффективности ультразвукового воздействия на частицы минерального порошка и, соответственно, затруднения при достижении необходимого нанодисперсного уровня размеров получаемых после воздействия частиц минерального порошка. Данное обстоятельство существенно осложняется тем, что контролировать размер частиц, образующихся в результате ультразвукового диспергирования в жидком смазочном материале, технически достаточно затруднительно ввиду следующих причин. Во-первых, уровень прозрачности большинства смазочных материалов, как правило, недостаточно высок для получения необходимого контраста при оценке размеров достаточно мелких частиц при использовании методов, включающих просвечивание суспензии, содержащей данные частицы. Это усугубляется тем, что состав среды, в которой осуществляется диспергирование, в соответствии с заявкой №2007117786/20(019363) от 09.06.07 (прототип), входят соли жирных кислот мягких металлов. Данные составляющие приводят к тому, что суспензия окончательно теряет прозрачность. При этом размеры частиц, получаемые в результате ультразвукового диспергирования, проконтролировать просвечивающими методами становится просто невозможно. В то же время использование других методов определения размеров данных частиц крайне осложнено трудностью извлечения их из образовавшегося коллоидного раствора. Таким образом, техническое решение, содержащееся в заявке №2007117786/20(019363) от 09.06.07, не может гарантировать, что размеры частиц, получаемые в соответствии с данным техническим решением, находятся именно в нанодисперсном диапазоне. Это, в свою очередь, существенно затрудняет не только контроль за технологическим процессом производства состава, но и делает практически невозможной оптимизацию состава по параметру его дисперсности в силу невозможности не только регулировать, но и контролировать его.
В связи с данным обстоятельством процесс оптимизации состава в техническом решении №2007117786/20(019363) от 09.06.07 осуществляется с помощью проведения триботехнических испытаний, которые вводятся как неотъемлемый элемент в технологический процесс изготовления состава. Это усложняет и удорожает рассматриваемую технологию.
Для преодоления перечисленных недостатков предлагается новое техническое решение - способ получения нанодисперсного противоизносного состава. Это техническое решение позволяет гарантировано довести дисперсность входящих в состав минеральных частиц до наноразмерного уровня и обеспечить практически полный переход исходного минерального порошка в коллоидный раствор. Такая нанодисперсная модификация состава существенно улучшает его эксплуатационные свойства.
Указанный эффект достигается следующим образом. После предварительного диспергирования минерального порошка в мельнице и пропускания его через сита порошок помещают в технологическую жидкость, с которой порошок в результате перемешивания образует суспензию. Основные требования к подобной технологической жидкости состоят в том, чтобы она обладала достаточной прозрачностью, могла быть легко разделена с минеральным порошком и в то же время имела как можно меньшую вязкость. Наличие этих качеств обеспечивает необходимые требования к процессу диспергирования без потери существенной доли мощности на вязкое трение в жидкости, кроме того, обеспечивает относительно простой и надежный контроль дисперсности минерального порошка за счет просвечивающих методов, а также обеспечивает требование разделения порошка с технологической жидкостью. В качестве такой жидкости в данном техническом решении предлагается вода, спирт и его водные растворы, а также керосин.
Поясним данное решение на примере воды. Диспергирование ультразвуком в воде минерального порошка осуществляется значительно эффективнее, чем в смазочных маслах в силу малой вязкости воды и ее относительно большого удельного веса, что существенно влияет на мощность ультразвуковой волны при одной и той же мощности генератора. Важным фактором контроля за дисперсностью минерального порошка является хорошая прозрачность и химическая и адсорбционная нейтральность воды, что позволяет использовать ее как в просвечивающих методах анализа дисперсности, так и в электронной микроскопии. Для примера на рис.1 приводится электронно-микроскопическая фотография реплики водной суспензии серпентина, прошедшей ультразвуковую обработку.
Как видно из фотографии, дисперсность полученных частиц лежит в наноразмерной области, чем обеспечивается достижение положительного эффекта. Для наглядной интерпретации данных по анализу подобных электронно-микроскопических фотографий используется метод построения кривых распределения, который позволяет оценить не только индивидуальную форму и размеры получаемых частиц, но и статистические показатели их распределения по размерам. Как видно из рис.2, распределение частиц по размерам имеет четко обозначенное среднее значение, которое лежит строго в нанодисперсном диапазоне.
Таким образом, использование воды как технологической жидкости позволило достаточно строго проконтролировать получаемые размеры частиц дисперсной фазы в предлагаемом составе. Именно это позволило оптимизировать мощность и время ультразвукового воздействия, имея в качестве параметра оптимизации размеры частиц минерального порошка. Как указывается в формуле изобретения, мощность ультразвукового излучения должна составлять не менее 5 кВт, а длительность его воздействия на суспензию минерального порошка и технологической жидкости - не менее 10 минут.
Использование данной технологии позволило достичь существенных положительных эффектов при использовании предлагаемого нанодисперсного противоизносного состава в реальных сопряжениях. В частности, авторами проводились испытания состава в конкретных тепловозных дизелях на Воронежском тепловозоремонтном заводе. Результаты испытания следующие.
Через заливочную горловину рамы картера дизеля 2А-5Д49 после достижения маслом температуры примерно 80 градусов был введен нанодисперсный противоизносный состав в количестве 150 г. Затем в течение 10 часов проводились реостатные испытания тепловоза в штатном режиме. По окончании указанного периода были проведены замеры давления сгорания в килограммах на сантиметр квадратный на 15-й позиции контроллера (максимальная мощность) по каждому из цилиндров двигателя. Результаты замера по цилиндрам правого ряда - 140, 140, 130, 118, 135, 140, 135, 150 (с первого по восьмой цилиндр). То же по цилиндрам левого ряда - 135, 130, 140, 135, 135, 135, 130, 135, 140. Перед реостатными испытаниями данный двигатель проходил обкатку и приемо-сдаточные испытания. Результаты замеров давления сгорания при тех же условиях на приемо-сдаточных испытаниях по правому ряду - 116, 110, 116, 118, 116, 116, 116, 118, по левому ряду - 114, 116, 118, 114, 116, 116, 116, 118. Нетрудно видеть, что по сравнению с приемо-сдаточными испытаниями после введения нанодисперсного противоизносного состава давление сгорания повысилось не менее чем на 10% по каждому цилиндру. Эти данные указывают на то, что в процессе работы нанодисперсного противоизносного состава на поверхностях трущихся деталей двигателя образовалась противоизносная пленка, что привело к соответствующему уменьшению зазоров, повышению давления сгорания и росту мощности дизеля при том же расходе топлива. Эти данные показывают высокую эффективность работы нанодисперсного противоизносного состава и получению, таким образом, предполагаемого положительного эффекта.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ И СОСТАВ СМАЗОЧНОЙ КОМПОЗИЦИИ ДЛЯ ФОРМИРОВАНИЯ ПРОТИВОИЗНОСНЫХ И АНТИФРИКЦИОННЫХ СВОЙСТВ ПРИПОВЕРХНОСТНЫХ СЛОЕВ ТРУЩИХСЯ ДЕТАЛЕЙ | 2007 |
|
RU2351640C2 |
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ДИОКСИДА КРЕМНИЯ УЛЬТРАЗВУКОМ | 2012 |
|
RU2508963C2 |
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОРАЗМЕРНОГО ПОРОШКА МЕДИ В БАЗОВОМ МОТОРНОМ МАСЛЕ | 2014 |
|
RU2591918C2 |
СОСТАВ ДЛЯ ПОВЫШЕНИЯ ПРОТИВОИЗНОСНЫХ И АНТИФРИКЦИОННЫХ СВОЙСТВ УЗЛОВ ТРЕНИЯ | 2003 |
|
RU2243252C1 |
СПОСОБ ФОРМИРОВАНИЯ АНТИФРИКЦИОННОГО ПОКРЫТИЯ НА КОНТАКТИРУЮЩИХ ТРУЩИХСЯ ПОВЕРХНОСТЯХ ИЗ УЛЬТРАДИСПЕРСНОЙ КОМПОЗИЦИИ И СОСТАВ УЛЬТРАДИСПЕРСНОЙ КОМПОЗИЦИИ | 2009 |
|
RU2421547C1 |
СОСТАВ ДЛЯ ПОВЫШЕНИЯ ИЗНОСОСТОЙКОСТИ УЗЛОВ ТРЕНИЯ | 2002 |
|
RU2246531C2 |
ТРИБОТЕХНИЧЕСКИЙ СОСТАВ ПРОТИВОИЗНОСНЫЙ АНТИФРИКЦИОННЫЙ ВОССТАНАВЛИВАЮЩИЙ | 2015 |
|
RU2599161C1 |
СМАЗОЧНЫЙ МАТЕРИАЛ С ПОВЫШЕННОЙ ТЕРМОСТОЙКОСТЬЮ, ОБЛАДАЮЩИЙ РЕМОНТНО-ВОССТАНОВИТЕЛЬНЫМИ СВОЙСТВАМИ | 2010 |
|
RU2454451C1 |
СПОСОБ ДИСПЕРГИРОВАНИЯ УГЛЕРОДНЫХ НАНОТРУБОК УЛЬТРАЗВУКОМ | 2017 |
|
RU2692541C2 |
ТВЕРДОСМАЗОЧНАЯ КОМПОЗИЦИЯ | 2014 |
|
RU2553255C1 |
Изобретение относится к машиностроению, в частности к способу получения нанодисперсного противоизносного состава, используемого в смазочном материале для узлов трения как из сплавов на основе железа, так и цветных металлов. Сущность: предварительно измельченный до порошка минерал вводят в технологическую жидкость и проводят обработку полученной суспензии с помощью ультразвука при мощности излучения не менее 5 кВт при длительности не менее 10 минут. Затем технологическую жидкость удаляют, а оставшийся состав диспергируют в жидком смазочном материале, содержащем поверхностно-активное вещество, образующее с частицами минерала коллоидный раствор. Полученную смесь отстаивают и образовавшуюся над отстоем суспензию используют в качестве присадки к основному смазочному материалу. Природный минерал содержит в мас.%: серпентин (лизардит и хризотил) 80-87, хлорит 2-3, магнетит 1-2, амакинит 1-2, кальцит 0,5-1, рентгеноаморфная фаза 8,5-12. Предпочтительно в качестве технологической жидкости используют воду, или спирт, или керосин. Смазочная композиция содержит основной смазочный материал и состав, получаемый в соответствии с описанным способом. Технический результат - снижение износа узлов трения в 3-4 раза, уменьшение потерь на трение в 3-4 раза, что приводит к повышению КПД машин и оборудования, снижению расхода смазочных материалов. 2 н. и 3 з.п. ф-лы, 1 табл., 2 ил.
1. Способ получения нанодисперсного противоизносного состава, представляющего собой суспензию высокодисперсных минералов в жидком смазочном материале, путем предварительного измельчения природных минералов до порошка, диспергирования его в жидком смазочном материале, содержащем поверхностно-активные вещества, образующие с частицами минералов в процессе диспергирования коллоидный раствор, отстаивания полученной смеси и использования образовавшейся над отстоем суспензии в качестве присадки к смазочному материалу, причем набор природных минералов имеет следующее соотношение компонентов, мас.%
отличающийся тем, что перед диспергированием в жидком смазочном материале порошок вводят в технологическую жидкость и проводят обработку полученной суспензии с помощью ультразвука при мощности излучения не менее 5 кВт при длительности не менее 10 мин с последующим удалением технологической жидкости и диспергированием в жидком смазочном материале.
2. Способ по п.1, отличающийся тем, что в качестве технологической жидкости используется вода.
3. Способ по п.1 или 2, отличающийся тем, что в качестве технологической жидкости используется спирт.
4. Способ по п.1 или 2, отличающийся тем, что в качестве технологической жидкости используется керосин.
5. Смазочная композиция для формирования противоизносных и антифрикционных приповерхностных слоев трущихся деталей, содержащая основной смазочный материал и состав, получаемый в соответствии со способом по любому из пп.1-4.
RU 2007117786 A1, 20.11.2008 | |||
СОСТАВ ДЛЯ ПОВЫШЕНИЯ ПРОТИВОИЗНОСНЫХ И АНТИФРИКЦИОННЫХ СВОЙСТВ УЗЛОВ ТРЕНИЯ | 2003 |
|
RU2243252C1 |
СПОСОБ ФОРМИРОВАНИЯ АНТИФРИКЦИОННОГО ПОКРЫТИЯ ТРУЩИХСЯ ПОВЕРХНОСТЕЙ | 2004 |
|
RU2264440C1 |
СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ НА ТРУЩИХСЯ ПОВЕРХНОСТЯХ | 2000 |
|
RU2179270C1 |
Авторы
Даты
2010-09-20—Публикация
2008-12-26—Подача