Изобретение относится к системам релейного регулирования параметров ядерного реактора и может быть использовано при регулировании ядерных энергетических установок с водо-водяными реакторами под давлением с газовыми системами компенсации.
Известна система релейного регулирования ЯР, при которой осуществляется поддержание температуры теплоносителя в реакторе в соответствии с заданными значениями, в общем случае изменяющимися при изменении уровня заданной нейтронной мощности и массы циркулирующего теплоносителя. Сигнал рассогласования между заданным и фактическим значениями контролируемого параметра со схемы сравнения поступает на реле, осуществляющее при достижении сигналом рассогласования границы зоны нечувствительности включение в работу или отключение поглощающих стержней (Шульц М.А. Регулирование энергетических ядерных реакторов, изд. Иностранная литература, 1957, фиг.140б).
Недостатком известной релейной системы регулирования является отсутствие контроля и управления перетекаемой массой теплоносителя (перетечками) между 1 контуром и системой газовой компенсации давления.
Наиболее близкой по технической сущности является система регулирования параметров ядерного реактора, функциональная схема которой содержит первую схему сравнения фактического параметра (например, температуры теплоносителя) с заданной величиной, вторую схему сравнения фактической нейтронной мощности с заданным значением, суммирующий усилитель, релейный элемент, первый и второй управляемый ключ, дополнительный релейный элемент и дополнительную схему сравнения (а.с. № 858465, кл. G21C 7/36 от 04.04.80). Выход первого ключа является выходом устройства. На первый вход суммирующего усилителя подается сигнал с выхода первой схемы сравнения контролируемого параметра (ΔT), а на второй - через второй ключ - с выхода второй схемы сравнения нейтронной мощности (ΔN). В суммирующем усилителе путем соответствующего усиления, а затем сложения сигналов рассогласования формируется суммарный сигнал ошибки (∑=КТ×ΔТ+KN×ΔN), где КТ, KN - коэффициенты усиления, который через первый ключ поступает на управление перемещением поглощающих стержней. Первый ключ осуществляет пропускание сигнала с выхода суммирующего усилителя только при наличии сигнала на его управляющем входе. Сигнал на управляющий вход первого ключа поступает с выхода первого релейного элемента и формируется им при превышении сигналом рассогласования (ΔT) с выхода первой схемы сравнения контролируемого параметра величины заданной зоны нечувствительности. На один вход дополнительной схемы сравнения подается сигнал рассогласования мощности (ΔN) со второй схемы сравнения, а на другой вход - сигнал заданной величины допустимого отклонения (ΔNmin). Сформированный в дополнительной схеме сравнения сигнал разности между абсолютной величиной отклонения мощности и заданной величиной допустимого отклонения (δN=|ΔN|-ΔNmin) подается на вход дополнительного релейного элемента. При превышении отклонения мощности допустимого значения (δN>0) происходит срабатывание дополнительного релейного элемента и сигнал с его выхода поступает на управляющий вход второго колюча. В этом случае второй ключ осуществляет пропускание сигнала (ΔN) с выхода второй схемы сравнения на второй вход суммирующего усилителя. При незначительных отклонениях мощности (|ΔN|<ΔNmin) второй ключ не пропускает сигнал (ΔN) с выхода схемы сравнения на второй вход суммирующего усилителя.
Недостатком этой системы регулирования является отсутствие контроля и управления перетечками теплоносителя в системе газовой компенсации давления при нестационарных и квазистатических режимах ядерного реактора, когда отклонения температуры в реакторе длительное время находятся вне пределов зоны чувствительности регулятора и не отрабатываются им в принципе, и как следствие - большие значения масс перетечек теплоносителя между 1 контуром и системой газовой компенсации давления, что приводит к значительным термоциклическим воздействиям на систему газовой компенсации давления и в конечном итоге снижает ее надежность (снижает ее ресурсные характеристики и эксплуатационные свойства).
Техническая задача - создание устройства, позволяющего уменьшить перетечки теплоносителя в газовых системах компенсации при нестационарных и квазистатических режимах. Решение поставленной задачи позволяет избежать больших масс перетекаемого теплоносителя, оказывающих термоциклическое воздействие на оборудование системы газовой компенсации давления, и снижающего его надежность.
Указанный технический результат достигается благодаря тому, что в системе регулирования параметров ядерного реактора, содержащей первую и дополнительную схемы сравнения, суммирующий усилитель, на первый вход которого подается сигнал с выхода первой схемы сравнения, первый и дополнительный релейный элемент, первый ключ, выход которого предназначен для съема сигнала регулирования, и второй ключ, причем второй вход суммирующего усилителя подключен к выходу второго ключа, управляющий вход которого подключен через дополнительный релейный элемент к выходу дополнительной схемы сравнения, один из входов которой служит для подачи сигнала заданного допустимого отклонения мощности, а другой - сигнала с выхода второй схемы сравнения, подключенного также к основному входу второго ключа, выход суммирующего усилителя подключен к основному входу первого ключа, управляющий вход которого через релейный элемент подключен к выходу первой схемы сравнения, в нее дополнительно введен блок вычисления стабилизирующего сигнала градиента эффективной температуры теплоносителя, выход которого соединен с дополнительным третьим входом суммирующего усилителя.
Введение нового элемента - блока вычисления градиента эффективной температуры (Δ∑Т), позволяет контролировать и уменьшать перетечки теплоносителя в нестационарных и квазистатических режимах ядерного реактора с системой газовой компенсации давления, при этом уровень снижения перетечек определяется коэффициентом усиления КД.
Система регулирования параметров ядерного реактора иллюстрируется блок-схемой и содержит первую схему сравнения 1 контролируемого параметра (например, температуры теплоносителя) с заданной величиной, вторую схему сравнения 2 измеренной нейтронной мощности с заданным значением, суммирующий усилитель 3, релейный элемент 4, первый 5 и второй 6 управляемые ключи, дополнительный релейный элемент 7, дополнительную схему сравнения 8, блок вычисления градиента эффективной температуры 9. Выход первого ключа 5 является выходом устройства.
Система работает следующим образом: на первый вход суммирующего усилителя 3 подается сигнал с выхода первой схемы сравнения 1 контролируемого параметра, формирующей контролирующий сигнал рассогласования (ΔT), а на второй - через второй ключ 6 - с выхода второй схемы сравнения нейтронной мощности 2, формирующей корректирующий сигнал рассогласования (ΔN). В суммирующем усилителе 3 путем соответствующего усиления, а затем сложения сигналов рассогласования формируется суммарный сигнал ошибки (∑=КТ×ΔТ+KN×ΔN+КД×Δ∑Т), где КТ, KN, КД - коэффициенты усиления, который через первый ключ 5 поступает на управление перемещением поглощающих стержней. Первый ключ 5 осуществляет пропускание сигнала с выхода суммирующего усилителя 3 только при наличии сигнала на его управляющем входе. Сигнал на управляющий вход первого ключа 5 поступает с выхода первого релейного элемента 4 и формируется им при превышении сигналом рассогласования (ΔT) с выхода первой схемы сравнения контролируемого параметра 1 величины заданной зоны нечувствительности. На один вход дополнительной схемы сравнения 8 подается сигнал рассогласования мощности (ΔN) со второй схемы сравнения 2, а на другой - сигнал заданной величины допустимого отклонения (ΔNmin). Сформированный в дополнительной схеме сравнения 8 сигнал разности между абсолютной величиной отклонения мощности и заданной величиной допустимого отклонения (δN=|ΔN|-ΔNmin) подается на вход дополнительного релейного элемента 7. При превышении отклонением мощности допустимого значения (δN>0) происходит срабатывание дополнительного релейного элемента 7 и сигнал с его выхода поступает на управляющий вход второго ключа 6. В этом случае второй ключ 6 осуществляет пропускание сигнала (ΔN) с выхода второй схемы сравнения 2 на второй вход суммирующего усилителя 3. С выхода блока вычисления сигнала градиента эффективной температуры теплоносителя 9 подается дополнительный стабилизирующий сигнал - градиент эффективной температуры (Δ∑Т) на дополнительно организованный третий вход суммирующего усилителя 3.
В суммирующем усилителе 3 осуществляется пропорциональное суммирование контролирующего сигнала (ΔT), корректирующего сигнала (ΔN) и стабилизирующего сигнала - градиента эффективной температуры теплоносителя (Δ∑Т). Причем коэффициент усиления КД определяется из условия необходимой минимизации перетечек теплоносителя.
Таким образом, введением дополнительного блока вычисления стабилизирующего сигнала - градиента эффективной температуры теплоносителя (Δ∑Т), достигается контроль и минимизация перетечек теплоносителя в нестационарных и квазистатических режимах ядерного реактора с газовыми системами компенсации, что позволяет снизить термоциклическое воздействие на оборудование системы газовой компенсации давления и повысить его ресурсную надежность и эксплуатационные свойства.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РЕГУЛИРОВАНИЯ ПАРАМЕТРОВ ЯДЕРНОГО РЕАКТОРА | 2009 |
|
RU2413315C2 |
СПОСОБ И УСТРОЙСТВО АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ МОЩНОСТИ ЯДЕРНОГО РЕАКТОРА | 2003 |
|
RU2244350C2 |
СИСТЕМА РЕГУЛИРОВАНИЯ ПАРАМЕТРОВ ЯДЕРНОГО РЕАКТОРА | 1980 |
|
SU858465A1 |
СПОСОБ УПРАВЛЕНИЯ РАЗОГРЕВОМ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ | 2000 |
|
RU2190266C2 |
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКОЙ | 2007 |
|
RU2360137C1 |
ПОДВОДНАЯ ЯДЕРНАЯ ТЕРМОЭЛЕКТРИЧЕСКАЯ УСТАНОВКА | 2014 |
|
RU2568433C1 |
СПОСОБ УПРАВЛЕНИЯ РАКЕТОЙ И СИСТЕМА УПРАВЛЕНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2012 |
|
RU2527391C2 |
СПОСОБ УПРАВЛЕНИЯ РЕАКТИВНОСТЬЮ БЫСТРОГО ГОМОГЕННОГО ЯДЕРНОГО РЕАКТОРА | 1999 |
|
RU2157006C1 |
Многоканальное регулирующее устройство | 1987 |
|
SU1529174A1 |
ФИЛЬТР-СТАБИЛИЗАТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ | 1995 |
|
RU2094935C1 |
Изобретение относится к системам релейного регулирования параметров ядерного реактора и может быть использовано при регулировании ядерных энергетических установок с водо-водяными реакторами под давлением с газовыми системами компенсации. В схему регулирования реактора вводится блок вычисления стабилизирующего сигнала-градиента эффективной температуры теплоносителя, выход которого соединен с дополнительным третьим входом суммирующего усилителя. В результате изменения схемы достигается минимизация перетечек теплоносителя между 1 контуром и газовой системой компенсации при нестационарных и квазистатических режимах, что позволяет избежать термоциклического воздействия на оборудование. Изобретение направлено на повышение надежности оборудования реактора. 1 ил.
Система регулирования параметров ядерного реактора, содержащая первую и дополнительную схемы сравнения, суммирующий усилитель, на первый вход которого подается сигнал с выхода первой схемы сравнения, первый и дополнительный релейные элементы, первый ключ, выход которого предназначен для съема сигнала регулирования, и второй ключ, причем второй вход суммирующего усилителя подключен к выходу второго ключа, управляющий вход которого подключен через дополнительный релейный элемент к выходу дополнительной схемы сравнения, один из входов которой служит для подачи сигнала заданного допустимого отклонения мощности, а другой - сигнала с выхода второй схемы сравнения, подключенного также к основному входу второго ключа, выход суммирующего усилителя подключен к основному входу первого ключа, управляющий вход которого через релейный элемент подключен к выходу первой схемы сравнения, отличающаяся тем, что в нее введен блок вычисления стабилизирующего сигнала градиента эффективной температуры теплоносителя, выход которого соединен с дополнительным третьим входом суммирующего усилителя.
СИСТЕМА РЕГУЛИРОВАНИЯ ПАРАМЕТРОВ ЯДЕРНОГО РЕАКТОРА | 1980 |
|
SU858465A1 |
СПОСОБ УПРАВЛЕНИЯ РАЗОГРЕВОМ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ | 2000 |
|
RU2190266C2 |
СПОСОБ И УСТРОЙСТВО АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ МОЩНОСТИ ЯДЕРНОГО РЕАКТОРА | 2003 |
|
RU2244350C2 |
WO 2008020542 А1, 21.02.2008 | |||
Узел соединения многожильного алюминиевого провода с контактным элементом | 1981 |
|
SU1083268A1 |
Авторы
Даты
2010-09-20—Публикация
2009-01-11—Подача