ДИФФУЗИОННАЯ ТЕЧЬ Российский патент 2010 года по МПК G01M3/02 

Описание патента на изобретение RU2402003C1

Изобретение относится к области неразрушающего контроля, а именно к контролю герметичности емкостей и сосудов различного назначения, в частности к устройствам для настройки системы течеискания, например, щуп-течеискатель, а конкретно к контрольным течам диффузионного типа (например, гелиевым), которые являются важным элементом метрологического обеспечения контроля герметичности. Создавая фиксированные потоки контрольного газа, они могут быть использованы в любых отраслях промышленности в качестве имитатора течи, эталона течи и в качестве стандартного образца предприятия.

Известные контрольные течи - капиллярные и механические - широко применяются в промышленности для настойки средств течеискания с чувствительностью более 6,7×10-7 Вт (IV, V класс по ПНАЭ Г-7-019-89). Недостаток этих течей - значительное изменение настройки за короткое время (от нескольких суток до нескольких месяцев).

Высокостабильные диффузионные течи, например «Гелиты» не могут быть использованы для указанных классов чувствительности, так как имеют слишком малые газовые потоки (I, II классы). Кроме того, ни одну из указанных выше течей нельзя использовать при испытаниях герметичности изделий, находящихся под водой. На практике часто требуются стабильные контрольные течи для отработки технологии и режимов контроля герметичности с использованием средств индикации в виде жидкостей, например воды или жидкостных покрытий, например пенопленочных, контактирующих с контролируемой поверхностью, например при пузырьковом методе (способ погружения или обмыливания), который является наиболее простым и дешевым с одной стороны, а с другой - обеспечивает меньшую погрешность при измерении величины течей, так как в качестве средств измерения применяются метрологически аттестованные приборы, секундомер и измерительный микроскоп, что особенно важно при осуществлении калибровки течей.

Предлагаемая разработка направлена на создание компактной, удобной для применения контрольной течи, на которой можно было бы отрабатывать многие технологии контроля герметичности, особенно при пузырьковом методе, с использованием средств индикации в виде жидкостей или пенопленочных покрытий.

В настоящее время известны калиброванные или контрольные регулируемые течи диффузионного типа (см. а/с СССР 1320677, публ. 1987 г.; а/с СССР 1320678, публ. 1987 г.; а/с СССР 1362986, публ. 1987 г.; а/с СССР 1577484, публ. 1988 г.; а/с СССР 1693410, публ. 1991 г. и т.д.), которые состоят из корпуса с входным и выходным каналами для прохождения контрольного газа, на пути которого в выходном канале установлен проницаемый диффузионный элемент, или несколько, диапазон регулирования которых осуществляют путем изменения площади проницаемого элемента механическим, электрическим и другими способами, однако, как правило, эти устройства имеют сложную конструкцию и неудобны в эксплуатации. Их сложно изготовить и они дорого стоят. Они содержат много деталей, которые постоянно работают и изнашиваются, а течи часто выходят из строя. Их нельзя использовать при пузырьковом методе контроля герметичности, так как он требует жидкостных индикаторов. Кроме того, для калибровки указанных выше течей используют сложные приборы-потокомеры, которые представляют собой дорогостоящее оборудование.

Известна калиброванная течь, содержащая корпус (баллон) с патрубком (выходным каналом), в котором размещен капилляр (проницаемая мембрана) из фторлона (сополимер винилиденфторида и тетрафторэтилена) и штенгель (входной канал) (см. а/с СССР 1014369, кл. G01M 3/02, публ. 1984 г.; а/с СССР 1293509, кл. G01M 3/02, публ. 1987 г.). Данная конструкция проста и позволяет значительно расширить диапазон величин создаваемых гелиевых потоков от 10-6 до 10-12 м3Па/с при стабильности гелиевого потока во времени. Обеспечивает создание высокостабильных потоков аргона, водорода в широком диапазоне величин, обеспечивает создание потоков нескольких газов одновременно, высокую прочность проницаемого элемента и возможность его работы при больших перепадах давления на нем (до 15 атм), возникающих при заполнении баллона (корпуса) течи контрольным газом и при эксплуатации. Все это расширяет область применения калиброванной течи, открывает возможности настройки и калибровки газоаналитической аппаратуры в различных условиях эксплуатации.

Однако для осуществления калибровки описанной выше течи нужен сложный и дорогостоящий прибор - потокомер. Данная течь требует вакуумирования. Ее нельзя использовать для отработки технологии и режимов контроля герметичности с использованием средств индикации в виде жидкостей или жидкостных покрытий, например, пузырьковым методом, а также при выполнении контроля изделий на герметичность под водой.

Известен диффузионный эталон течи для настройки системы щуп-течеискатель при испытании сосудов на герметичность воздушно-гелиевой смесью, содержащий корпус и диффузионный барьер (проницаемую мембрану) в виде пористой металлической пластины, прижимаемой к корпусу резиновым кольцом при помощи втулки и накидной гайки (см. а/с СССР 210476, кл. G01M 3/28, публ. 1968 г.). Данная течь проста по конструкции и при достаточно высоких избирательных свойствах проницаемой мембраны и точности измерения при осуществлении калибровки для регулирования потока требует только наличия емкости (баллона) с контрольным газом, при этом величина потока на выходе зависит от давления в корпусе, процентного содержания гелия и толщины пластины.

Однако и этой течи для определения величины потока, исходящего из нее, нужен сложный и дорогой потокомер. Она не может быть использована при выполнении контроля герметичности изделия, находящегося под водой, или при контроле герметичности с использованием жидких или пенопленочных индикаторов, например, при пузырьковом методе.

Конструкция диффузионной течи, защищенная авторским свидетельством СССР №210476, наиболее близка к предложению по своей сущности и достигаемому техническому результату и ее выбрали за прототип.

Задача новой разработки состоит в создании течи, в которой можно было бы применить высокостабильный процесс диффузионного проникновения газа через полимерную пленку для получения больших потоков контрольного газа с повышением достоверности и точности калибровки течей, а следовательно, и настройки системы контроля герметичности при испытаниях, с помощью, например, гелия, а также использования таких течей для контроля герметичности с помощью, жидких и пленочных индикаторов и под водой с сохранением простоты конструкции, технологичности изготовления и мобильности, что значительно расширяет их эксплуатационные возможности.

Сущность изобретения состоит в создании наилучших условий для формирования потока контрольного газа (гелия) путем сбора его после выхода из проницаемого элемента в одну точку у входа в капилляр и выхода через последний в виде потока, имитирующего поток реальной течи, который контактируя с контрольной жидкостью или покрытием (например, пенопленочным) образует пузырь, гарантированно исключая при этом попадание индикаторной жидкости на проницаемый элемент, так как длина капилляра больше высоты капиллярного поднятия в нем жидкости, а диаметр его обеспечивает образование сферического мениска индикаторной жидкости.

Это позволяет получать большие потоки контрольного газа из контрольных диффузионных течей, высокая стабильность которых повышает достоверность и точность калибровки, что позволяет использовать их для настройки систем контроля герметичности в качестве имитаторов, эталонов или стандартных образцов предприятия, при осуществлении контроля герметичности различных изделий в условиях вакуума, атмосферы с применением жидкостных или пенопленочных индикаторов или под водой.

Указанный выше технический результат достигается тем, что диффузионная течь, содержащая корпус с входными и выходным каналами, в выходном канале которой выполнен опорный поясок и на нем прижимным кольцевым элементом герметично закреплена проницаемая мембрана, снабжена конденсором газа, отверстие в котором выполнено в виде капилляра и который установлен между прижимным кольцевым элементом и проницаемой мембраной контактно с ее поверхностью, при этом на контактной поверхности конденсора выполнена заданная шероховатость или между конденсором газа и мембраной размещена сетка, причем конденсор газа может быть выполнен в виде емкости для жидкости, стенки капилляра в конденсоре газа покрыты гидрофобным материалом или конденсор выполнен из гидрофобного материала, в контактных поверхностях опорного пояска и конденсора газа выполнены элементы взаимодействия, например кольцевая проточка в опорном пояске и ответный ей кольцевой выступ в конденсоре газа, а в корпусе течи выполнено дренажное отверстие.

Введение в указанную контрольную течь конденсора газа с капилляром и установка его между кольцевым прижимным элементом и проницаемой мембраной контактно ее поверхности позволяет, собрав контрольный газ в одну точку у входа в капилляр, получить большой сформированный поток контрольного газа на выходе из капилляра, который контактируя с жидкостным или пенопленочным индикатором, образует пузырь, исключая при этом попадание этой жидкости на проницаемую мембрану, так как высота капиллярного поднятия жидкости значительно меньше длины капилляра.

Выполнение заданной шероховатости на контактной поверхности конденсора или размещение сетки между конденсором и проницаемой мембраной улучшают работу течи за счет равномерности транспортировки газа к входному отверстию капилляра.

Покрытие стенок капилляра конденсора газа гидрофобным материалом или выполнение конденсора из этого материала позволяет уменьшить высоту капилляра или увеличить его диаметр.

Выполнение конденсора в виде емкости позволяет использовать его для наполнения индикаторной жидкостью, например водой, то есть провести калибровку эталона течи пузырьковым методом.

Выполнение в контактирующих поверхностях опорного пояска и конденсоре газа - элементов взаимодействия, например, кольцевой проточки в опорном пояске и ответного кольцевого выступа в конденсоре газа, между которыми размещена проницаемая мембрана, обеспечивает высокую герметичность соединения, что качественно улучшает работу всей течи, кроме того, значительно упрощает конструкцию течи, упрощает ее сборку и улучшает ремонтопригодность.

Выполнение дренажного отверстия в корпусе течи позволяет перед наполнением ее контрольным газом выпустить имеющийся в корпусе воздух, наличие которого ухудшает качество работы течи, что также плохо влияет на достоверность контроля и точность калибровки.

Таким образом, предложенное усовершенствование диффузионной течи, позволяет получить высокостабильный поток контрольного газа, который, контактируя с жидкостным или пенопленочным индикатором, образует пузырьки, в зависимости от роста размеров которых определяется расход контрольного газа, подаваемого в диффузионную течь.

В результате повышается стабильность и качество калибровки контрольных течей, а значит, и настройки системы течеискания, и таким образом обеспечивается высокая достоверность контроля изделий на герметичность и расширяются ее эксплуатационные возможности.

Признаки, приведенные в формуле изобретения, являются необходимыми и достаточными для достижения указанного выше технического результата, то есть являются существенными.

Наличие отличительных признаков по отношению к выбранному прототипу свидетельствует о соответствии технического решения критерию "новизна" по действующему законодательству.

Заявленное изобретение для специалиста явным образом не следует из известного уровня техники и, следовательно, соответствует требованию "изобретательский уровень".

Сведения, подтверждающие возможность осуществления изобретения с получением вышеуказанного технического результата, поясняются чертежом, на котором показано продольное сечение предлагаемой диффузионной течи, содержащей корпус 1, в стенках которого выполнены входной для контрольного газа, например гелия, канал 2, выходной канал 3 для контрольного газа и дренажное отверстие 4 для выпуска воздуха, находящегося в корпусе 1. В стенке выходного канала 3 выполнен опорный поясок 5 с кольцевой канавкой 6 - элементы взаимодействия. На кольцевом опорном пояске 5 размещена проницаемая мембрана 7 из полимерного проницаемого материала, контактно которой установлен конденсор 8 газа с капилляром 9, высота которого больше высоты капиллярного подъема жидкости. На поверхности конденсора 8 газа, контактирующей с поверхностью проницаемой мембраны 7, выполнена заданная шероховатость Rz≥50, а по периферии выступ 10, ответно которому в опорном пояске 5 выполнен элемент взаимодействия в виде кольцевой проточки 6. Конденсор 8 газа кольцевым элементом 11 прижат к проницаемой мембране 7, образуя по периферии герметичное соединение между конденсором 8 газа и опорным пояском 5. Между конденсором 8 газа и проницаемой мембраной 7 для повышения технологичности дополнительно может быть уложена металлическая сетка. Стенки капилляра 9 могут быть покрыты гидрофобным материалом. Из гидрофобного материала может быть выполнен конденсор 8 газа. Конденсор 8 газа может быть выполнен в виде емкости для размещения индикаторной жидкости, например воды.

Работа предложенной диффузионной течи осуществляется следующим образом (см. чертеж): контрольный газ, в данном случае гелий, через газовый редуктор под давлением подается из емкости (баллона) (на чертеже не показано) в входной канал 2 корпуса 1, течи и выходит из корпуса 1 течи через дренажное отверстие 4 в нем, после чего отверстие 4 перекрывают (на чертеже не показано). Таким образом, обеспечивается чистота контрольного газа внутри корпуса 1. Далее контрольный газ (гелий) продолжают подавать в корпус 1 течи и он начинает диффундировать через проницаемую мембрану 7, которая изготовлена, например, из пленки ПЭТ (полиэтилентерефталата). Вышедший через проницаемую мембрану 7 по шероховатости Rz≥50, выполненной на поверхности конденсора 8 газа, контактирующего с проницаемой мембраной 7 (или сеткой, которая на чертеже не показана), контрольный газ - гелий собирается у входа в капилляр 9, и сформированный таким образом газовый поток начинает стабильно выходить через капилляр 9. Затем на внешнюю (свободную) поверхность конденсора 8 газа наносят пенопленочный или жидкостный индикатор, если конденсор выполнен в виде емкости, и продолжая подавать контрольный газ (гелий) в корпус течи, с помощью измерительного микроскопа и секундомера замеряют рост во времени газового пузырька, выходящего из капилляра 9 (на чертеже не показано). При этом попадание жидкости, например воды, на мембрану 7 исключено, так как длина капилляра 9 больше высоты капиллярного проникновения жидкости.

Далее на основании произведенных замеров строятся графики зависимости роста пузырька, а следовательно, и расхода газа от давления контрольного газа, подаваемого в корпус 1 диффузионной течи Q=f(P). Построенные графики используются для настройки системы течеискания, что значительно повышает достоверность и точность контроля различных изделий в вакууме, атмосфере и под водой.

Кроме того, предложенная конструкция проста, технологична в изготовлении и мобильна, что значительно расширяет ее эксплуатационные возможности при низкой себестоимости изготовления.

В настоящее время изготовлен опытный образец предложенной диффузионной течи, который прошел испытания и доказал не только промышленную применимость, но и полностью подтвердил новый технический результат: создание наилучших условий приближения к реальным дефектам, образующимся в различных изделиях, что обеспечивает высокую чувствительность и достоверность контроля герметичности.

Из изложенного выше следует, что заявленная диффузионная течь решает поставленную задачу (возможности калибровки контрольной диффузионной течи пузырьковым методом, так как он является наиболее достоверным и точным при низкой стоимости) с достижением нового технического результата и соответствует требованиям патентоспособности по действующему законодательству.

Таким образом, высокостабильный процесс диффузионного проникновения газа через полимерную пленку был использован для получения больших потоков контрольного газа.

В результате получена компактная, удобная для применения контрольная течь, на которой можно отрабатывать многие технологии контроля герметичности.

Впервые решается задача использования высокостабильных калиброванных течей диффузионного типа в качестве стандартных образцов предприятия (СОП) при контроле герметичности методами, соответствующими IV, V классам чувствительности по ПНАЭ Г-7-019-89.

Похожие патенты RU2402003C1

название год авторы номер документа
РЕГУЛИРУЕМАЯ КОНТРОЛЬНАЯ ТЕЧЬ 2009
  • Кожевников Евгений Михайлович
  • Морозов Владимир Сергеевич
  • Забалдина Александра Владимировна
  • Булгакова Надежда Владимировна
  • Валиуллин Фанис Барыевич
RU2386936C1
КОНТРОЛЬНАЯ ТЕЧЬ 2016
  • Кожевников Евгений Михайлович
  • Морозов Владимир Сергеевич
  • Валов Олег Андреевич
RU2655000C1
Способ изготовления контрольной капиллярной течи 2020
  • Кожевников Евгений Михайлович
RU2736165C1
УСТРОЙСТВО ДЛЯ ПОИСКА МЕСТ НЕГЕРМЕТИЧНОСТИ 2015
  • Кожевников Евгений Михайлович
  • Морозов Владимир Сергеевич
  • Валов Олег Андреевич
  • Валиуллин Фанис Барыевич
  • Скудра Владимир Альбертович
  • Вилисов Александр Борисович
RU2599412C1
КОНТРОЛЬНАЯ ТЕЧЬ СО ШКАЛОЙ 2021
  • Кожевников Евгений Михайлович
RU2776273C1
Способ изготовления контрольной капиллярной течи 2017
  • Кожевников Евгений Михайлович
  • Морозов Владимир Сергеевич
  • Тараненко Олег Игоревич
RU2658588C1
Контрольная течь 1986
  • Зайцев Владимир Петрович
  • Машталяр Андрей Николаевич
SU1362986A1
СПОСОБ ИСПЫТАНИЯ НА ГЕРМЕТИЧНОСТЬ И ВАКУУМНАЯ СИСТЕМА ТЕЧЕИСКАТЕЛЯ, РЕАЛИЗУЮЩАЯ ЕГО 2002
RU2239807C2
Регулируемая контрольная течь 1986
  • Алейник Юрий Васильевич
  • Куприянов Владимир Иванович
  • Чубаров Евгений Васильевич
SU1320678A1
Регулируемая контрольная течь 1979
  • Исупов Георгий Павлович
  • Гутман Давид Гершевич
  • Мятишкин Анатолий Аркадьевич
SU807093A1

Реферат патента 2010 года ДИФФУЗИОННАЯ ТЕЧЬ

Изобретение относится к области испытательной и контрольной техники и предназначено для настройки систем течеискания, калибровка которых осуществляется пузырьковым методом и которые могут быть использованы в любых отраслях промышленности в качестве имитаторов течи, контрольной течи, эталона течи, а также в качестве стандартного образца предприятия. Техническим результатом изобретения является повышение достоверности и точности контроля герметичности, расширение эксплуатационных возможностей, простота, удобство и недороговизна процесса калибровки систем течеискания. Этот технический результат обеспечивается за счет того, что диффузионная течь содержит корпус с входным и выходым каналами, в выходном канале выполнен опорный поясок и на нем прижимным кольцевым элементом герметично закреплена проницаемая мембрана. При этом согласно изобретению, между прижимным элементом и проницаемой мембраной контактно ее поверхности установлен конденсор газа с отверстием в виде капилляра, который установлен между прижимным кольцевым элементом и проницаемой мембраной, а на контактной поверхности конденсора выполнена заданная шероховатость или между конденсором газа и проницаемой мембраной размещена сетка. 4 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 402 003 C1

1. Диффузионная течь для настройки системы течеискания, содержащая корпус с входным и выходным каналами, в выходном канале выполнен опорный поясок, и на нем прижимным кольцевым элементом герметично закреплена проницаемая мембрана, отличающаяся тем, что она снабжена конденсором газа, отверстие в котором выполнено в виде капилляра и который установлен между прижимным кольцевым элементом и проницаемой мембраной контактно ее поверхности, при этом на контактной поверхности конденсора выполнена заданная шероховатость или между конденсором газа и проницаемой мембраной размещена сетка.

2. Диффузионная течь по п.1, отличающаяся тем, что в корпусе течи выполнено дренажное отверстие.

3. Диффузионная течь по п.1, отличающаяся тем, что стенки капилляра в конденсоре газа покрыты гидрофобным материалом.

4. Диффузионная течь по п.1, отличающаяся тем, что конденсор газа выполнен из гидрофобного материала.

5. Диффузионная течь по п.1, отличающаяся тем, что в контактных поверхностях опорного пояска и конденсора газа выполнены элементы взаимодействия, например кольцевая проточка в опорном пояске и ответный ей кольцевой выступ в конденсоре газа.

Документы, цитированные в отчете о поиске Патент 2010 года RU2402003C1

ДИФФУЗИОННЫЙ ЭТАЛОН ТЕЧИ 0
SU210476A1
US 5777203 А, 07.07.1998
Регулируемая контрольная течь 1986
  • Алейник Юрий Васильевич
  • Куприянов Владимир Иванович
  • Чубаров Евгений Васильевич
SU1320678A1
Проницаемый элемент контрольной течи 1981
  • Шульженко Александр Васильевич
  • Сабадаш Анатолий Михайлович
  • Фатеев Юрий Федорович
SU968644A1
Регулируемая контрольная течь 1985
  • Алексеев Владислав Михайлович
  • Болотов Александр Николаевич
  • Лочагин Николай Васильевич
  • Покусаев Валерий Сергеевич
SU1320677A1
US 4459844 A, 17.07.1984
US 3867631 A, 18.02.1975.

RU 2 402 003 C1

Авторы

Наумов Вадим Николаевич

Горбачев Виктор Иванович

Полковников Алексей Васильевич

Сумкин Павел Сергеевич

Даты

2010-10-20Публикация

2009-06-08Подача