Изобретение относится к электротехнике, в частности к низкооборотным высокомоментным электрическим двигателям, электроприводам и генераторам, касается конструктивного исполнения бесконтактных электрических машин с электромагнитной редукцией и может быть использовано в системах автоматики, в качестве мотор-колес, мотор-барабанов, стартер-генераторов, электроусилителей руля, прямых приводов в бытовой технике (электромясорубки, электросоковыжималки, стиральные машины и пр.), электроприводов большой и средней мощности судов, троллейбусов, трамваев метро, бетоносмесителей, грузоподъемных механизмов, ленточных транспортеров, насосов для перекачки жидкостей, механизмов с высокими моментами на валу и низкими частотами вращения вала, а также, в качестве ветрогенераторов, гидрогенераторов, высокочастотных электрических генераторов и синхронных генераторов преобразователей частоты.
Известна индукторная электрическая машина (Патент RU, 2009599 С1, МПК 5 НО2К 19/06, НО2К 19/24, авторы: Жуловян В.В.; Новокрещенов О.И.; Шаншуров Г.А.), содержащая явнополюсный с числом полюсов Z0 зубчатый статор с многофазной катушечной обмоткой, каждая катушка которой размещена на одном полюсе статора, безобмоточный ферромагнитный зубчатый ротор и преобразователь, к которому подключена обмотка статора, статор и ротор выполнены с четными и не равными друг другу числами зубцов и каждая фаза обмотки выполнена из p встречно включенных катушек, размещенных со сдвигом на двойное полюсное деление 2·τ, где 2·τ=Z0/p, p - число четное.
Известен синхронный редукторный двигатель (Патент RU, 2054220 С1, МПК 6 НО2К 37/00, НО2К 19/06, авторы: Шевченко А.Ф.; Калужский Д.Л.), содержащий ротор с Zp зубцами и статор с 4·р полюсами (р=1, 2, 3,…), на внутренней поверхности которых выполнены элементарные зубцы по Zs зубцов на каждом полюсе, причем Zr=4·p·(Zs+K)±p (где K=0, 1, 2,… - целое число), в большие пазы между полюсами уложены катушки однофазной обмотки по одной на каждом полюсе, катушки, расположенные на одноименных полюсах с номерами, различающимися на 4, соединены последовательно "конец" с "началом" и образуют четыре ветви, "конец" первой ветви, образованной 1, 5,…, 1+4·(p-1) катушками, соединен с "началом" третьей ветви, образованной 3, 7,…, 3+4·(p-1) катушками, и точка соединения этих ветвей подключена к первому выводу обмотки, "конец" второй ветви, образованной 2, 6,…, 2+4·(p-1) катушками, соединен с "началом" четвертой ветви, образованной 4, 8,…, 4+4·(p-1) катушками и точка соединения этих ветвей через последовательно включенный конденсатор также подключена к первому выводу, а ко второму выводу подключены два диода таким образом, что с анодом первого из них соединены первая и четвертая ветви, а с катодом второго диода - вторая и третья ветви.
Недостатком описанных индукторной электрической машины и синхронного редукторного двигателя являются невысокие энергетические показатели. Кроме этого, указанные технические устройства чаще всего выполняют с малыми воздушными зазорами, что затрудняет их изготовление при массовом (серийном) производстве.
Известен бесконтактный моментный электродвигатель (Патент RU, 2285322 С1, МПК НО2К 21/00, автор Епифанов O.K.), содержащий магнитомягкий кольцевой пазовый статор с Р явно выраженными зубчатыми полюсами и с сосредоточенной w-фазной обмоткой якоря, выполненной в виде катушек, охватывающих полюса статора, и ротор, выполненный в виде двух соосно расположенных кольцевых зубчатых магнитомягких магнитопроводов ротора, развернутых относительно друг друга на половину своего зубцового деления, между которыми размещен кольцевой слой аксиально намагниченных в одном направлении постоянных магнитов, причем зубчатые полюса статора и зубчатые магнитопроводы ротора обращены друг к другу и разделены воздушным зазором δ, а зубцы на магнитопроводах ротора и на полюсах статора выполнены с равномерными и равными друг другу зубцовыми делениями TZ, ротор снабжен немагнитной втулкой толщиной большей половины толщины bM слоя постоянных магнитов, на которой установлены и закреплены неподвижно относительно друг друга зубчатые магнитопроводы ротора равной друг другу активной осевой длиной Lp и кольцевой слой постоянных магнитов, при этом число m фаз m-фазной обмотки якоря выполнено кратным трем, определяемым как m=2f±1, где f равно 1, 2, 3,…, а явно выраженные зубчатые полюса на пазовом статоре расположены равномерно, при этом их число определяется как P=2m·2S, где s равно 0, 1, 2,…, а на каждом зубчатом полюсе статора симметрично относительно его оси размещено нечетное число зубцов ZC толщиной bZC, при этом оси зубцов соседних зубчатых полюсов статора смещены относительно друг друга на величину, пропорциональную отношению ±TZ к m, причем соседние полюса статора разделены шлицом шириной bШ не менее десятикратной величины воздушного зазора, определяемой из соотношения bШ=TZ·[(1±1/m)-bZC/TZ а число зубцов ZR на каждом из зубчатых магнитопроводов ротора выполнено кратным 2n при n, равном 2, 3, 4,…, определяемым как ZR=P·(ZC±1/m), при этом толщина зубцов bZP каждого из зубчатых магнитопроводов ротора выполнена равной половине его зубцового деления TZ и связана с толщиной зубцов зубчатых полюсов статора bzc соотношением 2/3≤bZC/bZP≤1, а катушки обмотки якоря одной фазы, отстоящие друг от друга на число полюсных делений статора, равное числу m фаз, соединены последовательно-согласно, при этом активная осевая длина LC кольцевого пазового статора с зубчатыми полюсами определяется из соотношения LC=(2LP+bM), причем кольцевые зубчатые магнитопроводы ротора расположены относительно кольцевого пазового статора аксиально симметрично. Недостатком аналога является сложность сборки и разборки электродвигателя при выполнении конструкций с большими диаметрами и длинами статоров и применение в связи с этим специальных устройств и приспособлений. Кроме того, наличие постоянных магнитов в конструкциях аналога ограничивает применение описанных электродвигателей при высоких температурах и больших электромагнитных нагрузках, так как в области высоких температур происходят необратимые изменения характеристик постоянных магнитов и ухудшение их свойств.
Известна принятая за прототип бесконтактная индукторная вентильная электрическая машина с электромагнитным возбуждением (Патент RU 2277284 С2, МПК Н02К 19/10, Н02К 29/00, авторы: Демьяненко А.В.; Жердев И.А.; Козаченко В.Ф.; Русаков A.M.; Остриров В.Н.), содержащая корпус с установленными в нем шихтованными из листов электротехнической стали пакетами статора, число которых кратно двум, с пазами в них для укладки фазных обмоток, фазные обмотки, уложенные в пазы пакетов статора так, что их витки в пазовых частях обмотки параллельны продольной оси машины и один виток охватывает все зубцы пакетов статора, находящиеся против друг друга, обмотку возбуждения с продольной осью, параллельной продольной оси машины, расположенную на статоре между пакетами статора, металлический немагнитный вал с втулкой из магнитомягкого металла на нем, на которой установлены зубчатые пакеты ротора, шихтованные из пластин магнитомягкой стали, число которых равно числу пакетов статора, две крышки с подшипниками, общее число фазных обмоток больше трех и их число кратно трем, причем каждые три фазные обмотки имеют свою независимую нулевую точку и между соседними фазами различных триад имеется угол фазового сдвига, при том, что отношение числа зубцов статора Zст к числу зубцов ротора Zp выражается дробью, в которой число зубцов ротора является простым числом, начиная с пяти 5, 7, 11, 13, 17,… Недостатком прототипа является выполнение числа пакетов статора только кратным двум, фазных обмоток больше трех и только кратных трем, а числа зубцов ротора являются только простыми числами, начиная с пяти. Это снижает возможные конструктивные исполнения данного технического устройства и возможности его использования. Кроме того, прототип имеет меньший по сравнению с заявляемым изобретением удельный (отнесенный к массе активных материалов) момент на валу.
Целью настоящего изобретения является создание конструкции бесконтактной редукторной электрической машины с электромагнитным возбуждением с большим удельным вращающим моментом на валу при высокой электромагнитной редукции частоты вращения в режиме электрического двигателя и при большой удельной мощности и высокой электромагнитной редукции частоты ЭДС в режиме электрического генератора, с возможностью работы при высоких электромагнитных нагрузках и в области высоких температур, обладающей высокой технологичностью выполнения обмоток и высокой надежностью.
Задачей настоящего изобретения является оптимальный выбор числа зубчатых явно выраженных полюсов каждого пакета статора, числа зубцов каждого пакета статора и числа зубцов каждого пакета ротора при выполнении сосредоточенной на зубчатых явно выраженных полюсах пакетов статора катушечной m-фазной обмотки якоря и расположенной между пакетами статора кольцеобразной обмотки возбуждения индуктора бесконтактной редукторной электрической машины с электромагнитным возбуждением.
Техническим результатом настоящего изобретения является получение высоких эксплуатационных характеристик бесконтактной редукторной электрической машины с электромагнитным возбуждением с возможностью глубокого регулирования ее выходными параметрами.
С целью достижения поставленной задачи и технического результата редукторная электрическая машина с электромагнитным возбуждением содержит корпус, выполненный из магнитомягкой стали с высокой магнитной проницаемостью и являющийся магнитопроводом статора, четные и нечетные пакеты статора и ротора, шихтованные из изолированных листов электротехнической стали с высокой магнитной проницаемостью, причем число пакетов статора не менее двух, число пакетов ротора равно числу пакетов статора, пакеты статора и ротора обращены друг к другу и разделены воздушным зазором, длина крайних пакетов статора и ротора в аксиальном направлении одинакова, при наличии пакетов статора и, соответственно, ротора более двух, длина пакетов статора и ротора в аксиальном направлении, находящихся между крайними пакетами, в два раза больше длины крайних пакетов, пакеты статора содержат равномерно распределенные по цилиндрической поверхности явно выраженные полюса, на внутренней поверхности которых выполнены элементарные зубцы, число явно выраженных полюсов на каждом пакете статора одинаково, число элементарных зубцов на каждом явно выраженном полюсе пакета статора одинаково, пакеты статора в тангенциальном направлении расположены таким образом, чтобы оси находящихся друг против друга в аксиальном направлении явно выраженных полюсов всех четных и нечетных пакетов статора совпадали, пакеты ротора содержат равномерно распределенные по цилиндрической поверхности зубцы, число которых на каждом пакете ротора одинаково, четные пакеты ротора смещены относительно нечетных пакетов ротора в тангенциальном направлении на половину зубцового деления пакета ротора, пакеты ротора насажены на втулку, выполненную из магнитомягкой стали с высокой магнитной проницаемостью и являющуюся магнитопроводом ротора, которая установлена на немагнитном валу, на явно выраженных полюсах пакетов статора сосредоточена катушечная m-фазная обмотка якоря, каждая катушка которой в аксиальном направлении охватывает соответствующие (находящиеся друг против друга) явно выраженные полюса четных и нечетных пакетов статора по одному явно выраженному полюсу каждого пакета, между пакетами статора расположена обмотка возбуждения индуктора, выполненная в виде охватывающих магнитопровод ротора между четными и нечетными пакетами ротора кольцеобразных катушек с продольной осью, совпадающей с продольной осью машины, число кольцеобразных катушек обмотки возбуждения индуктора на одну меньше числа пакетов статора, возбуждение индуктора осуществляется при питании обмотки возбуждения постоянным (выпрямленным) током, ширина коронок зубцов пакетов ротора определяется выражением bZ2=k·tZ2, а ширина коронок элементарных зубцов, расположенных на явно выраженных полюсах статора, может определяться выражением bZ1=k·tZ1, а также выражением bZ1=k·tZ2, при этом tZ1 и tZ2 представляют собой зубцовые деления явно выраженных полюсов статора и пакетов ротора соответственно, k=0,38÷0,5 и выбирается в зависимости от формы переменного тока якоря при работе машины в режиме электрического двигателя и от формы переменной ЭДС якоря при работе машины в режиме электрического генератора.
При применении бесконтактной редукторной электрической машины с электромагнитным возбуждением в качестве синхронного электрического двигателя питание обмотки якоря осуществляется:
- от источника трехфазного переменного напряжения,
- от источника однофазного переменного напряжения при помощи фазосдвигающего элемента,
- от m-фазного источника переменного напряжения постоянной частоты,
- от m-фазного источника переменного напряжения регулируемой частоты,
- от источника постоянного напряжения посредством управляемого инвертора, подающего синусоидальное напряжение на фазы обмотки якоря в зависимости от показаний датчика углового положения ротора для достижения максимального вращающего момента.
При применении бесконтактной редукторной электрической машины с электромагнитным возбуждением в качестве двигателя постоянного тока питание обмотки якоря осуществляется прямоугольными импульсами напряжения от электронного коммутатора по определенному алгоритму в зависимости от показаний датчика углового положения ротора для достижения максимального вращающего момента.
Бесконтактная редукторная электрическая машина с электромагнитным возбуждением может также работать в качестве синхронного m-фазного генератора синусоидальной ЭДС и в качестве синхронного m-фазного генератора переменной ЭДС прямоугольной формы без постоянной составляющей.
Обмотка возбуждения индуктора бесконтактной редукторной электрической машины с электромагнитным возбуждением может подключаться к независимому источнику постоянного (выпрямленного) напряжения непосредственно, а также может подключаться к выходу диодного m-фазного моста, входные концы которого подключены к выходным концам фаз m-фазной обмотки якоря.
В настоящем изобретении катушечная m-фазная обмотка якоря и обмотка возбуждения индуктора располагаются на статоре, а ферромагнитный зубчатый ротор выполнен безобмоточным. Возможны исполнения бесконтактной редукторной электрической машины с электромагнитным возбуждением с внешним статором и внутренним ротором, с внутренним статором и внешним ротором.
В соответствии с настоящим изобретением для получения наилучших энергетических показателей при максимальном удельном моменте на валу бесконтактной редукторной электрической машины с электромагнитным возбуждением число явно выраженных полюсов каждого пакета статора Z1p, число элементарных зубцов на каждом явно выраженном полюсе пакета статора Z1s=1, 2, 3, 4…, число фаз m-фазной обмотки якоря m=3, 4, 5, 6…, число явно выраженных полюсов каждого пакета статора в фазе Z1m=1, 2, 3, 4…, число зубцов каждого пакета статора Z1, число зубцов каждого пакета ротора Z2 связаны равенствами (1), (2), (3):
Катушки m-фазной обмотки якоря в фазе должны быть соединены между собой таким образом (согласно или встречно), чтобы векторы наведенных в них ЭДС, геометрически складываясь, образовывали максимальную суммарную ЭДС фазы якоря бесконтактной редукторной электрической машины с электромагнитным возбуждением.
Если число четных и нечетных пакетов статора более двух, то число кольцеобразных катушек обмотки возбуждения индуктора, охватывающих магнитопровод ротора между четными и нечетными пакетами ротора, более одной. В этом случае кольцеобразные катушки обмотки возбуждения индуктора должны быть соединены между собой таким образом, чтобы при протекании по ним постоянного (выпрямленного) электрического тока зубцы нечетных пакетов ротора образовывали магнитные полюса одной полярности, например, южные полюса «S», а зубцы четных пакетов ротора образовывали магнитные полюса другой полярности, например, северные полюса «N».
Сущность изобретения поясняется чертежами.
Фиг.1 - общий вид бесконтактной редукторной электрической машины с электромагнитным возбуждением с внешним статором и внутренним ротором,
фиг.2 - общий вид бесконтактной редукторной электрической машины с электромагнитным возбуждением с внутренним статором и внешним ротором,
фиг.3÷15 - примеры реализации изобретения в виде поперечных сечений нечетных и четного пакетов статора и нечетных и четного пакетов активного ротора, схем соединения катушек m-фазных обмоток якоря и включение m-фазных обмоток якоря на источники переменных напряжений с различным числом фаз и в виде векторных диаграмм электрических токов (МДС).
На фиг.4 представлена схема соединений катушек 3- фазной обмотки якоря с подключением на 3- фазный источник напряжения.
На фиг.6 представлена схема соединений катушек 4- фазной обмотки якоря с подключением на 4- фазный источник напряжения и с подключением двух кольцеобразных катушек обмотки возбуждения индуктора через 4- фазный диодный мост D1÷D8 к выходным концам обмотки якоря. Направление намотки кольцеобразных катушек обмотки возбуждения индуктора в аксиальном направлении одинаковое, начало н1 первой кольцеобразной катушки соединено с «минусовым» выходом диодного моста, конец к1 первой кольцеобразной катушки соединен с концом к2 второй кольцеобразной катушки, начало н2 второй кольцеобразной катушки соединено с «плюсовым» выходом диодного моста.
На фиг.8 представлена схема соединений катушек 5- фазной обмотки якоря с подключением на 5- фазный источник напряжения.
На фиг.10 представлена схема соединений катушек 6- фазной обмотки якоря с подключением на 6- фазный источник напряжения.
На фиг.12 представлена схема соединений катушек 4- фазной обмотки якоря с подключением в однофазную сеть переменного тока промышленной частоты. Сдвиг фаз источника напряжения, необходимый для работоспособности машины, обеспечивается при помощи фазосдвигающего элемента, в данном случае при помощи емкости С. При этом wAN - это числа витков катушек обмотки якоря, подключенных непосредственно к фазе «А» и нулю, wCN - это числа витков катушек обмотки якоря, подключенных к фазе «A» и нулю через фазосдвигающую емкость С. Коэффициент трансформации обмоток фаз якоря лежит в пределах kтр=wCN/wAN=1÷2.
На фиг.14 представлена схема соединений катушек 6- фазной обмотки якоря с подключением на 3- фазный источник напряжения.
На фиг.15 представлена схема соединений катушек 9- фазной обмотки якоря с подключением на 3- фазный источник напряжения.
На фиг.3÷15 представлены примеры реализации изобретения в соответствии с формулами (1), (2), (3) в виде поперечных сечений нечетных и четного пакетов статора и нечетных и четного пакетов активного ротора (по обмотке возбуждения индуктора протекает постоянный (выпрямленный) электрический ток, образуя магнитные полюса «S» и «N» зубцов пакетов ротора) бесконтактной редукторной электрической машины с электромагнитным возбуждением, схем соединения катушек w-фазных обмоток якоря при включении m-фазных обмоток якоря в двигательном режиме на источники переменных напряжений с различным числом фаз и в виде векторных диаграмм электрических токов (МДС). Соответствие чертежей поперечных сечений нечетных и четного пакетов статора и нечетных и четного пакетов ротора и схем соединения катушек m-фазных обмоток якоря поясняется в таблице.
Буква m в таблице обозначает количество фаз m-фазной обмотки якоря бесконтактной редукторной электрической машины с электромагнитным возбуждением, а mист - количество фаз переменного источника напряжения. Положение нечетных и четного пакетов ротора относительно нечетных и четного пакетов статора на чертеже в двигательном режиме соответствует моменту времени, при котором показано положение векторов электрических токов на соответствующей схеме соединения катушек m-фазной обмотки якоря бесконтактной редукторной электрической машины с электромагнитным возбуждением.
Рассмотрим конструкцию бесконтактной редукторной электрической машины с электромагнитным возбуждением с внешним статором и внутренним ротором (фиг.1, фиг.3, фиг.5, фиг.7, фиг.9, фиг.11, фиг.13). Перемагничиваемые с высокой частотой нечетные 1 и 3 пакеты и четный 2 пакет статора выполнены шихтованными из изолированных листов электротехнической стали с высокой магнитной проницаемостью и закреплены в магнитопроводе 4 статора, являющегося корпусом и выполненного из магнитомягкой стали с высокой магнитной проницаемостью. Пакеты 1, 2, 3 статора содержат равномерно распределенные по цилиндрической поверхности явно выраженные полюса 13, на внутренней поверхности которых выполнены элементарные зубцы 14. Число явно выраженных полюсов 13 на каждом пакете статора одинаково, число элементарных зубцов 14 на каждом явно выраженном полюсе 13 пакетов статора одинаково. Пакеты 1, 2, 3 статора в тангенциальном направлении расположены таким образом, что оси их находящихся друг против друга в аксиальном направлении явно выраженных полюсов 13 совпадают. На явно выраженных полюсах 13 пакетов статора размещена катушечная m-фазная обмотка 12 якоря, каждая катушка которой в аксиальном направлении охватывает соответствующие явно выраженные полюса четного 2 и нечетных 1 и 3 пакетов статора по одному полюсу каждого пакета. Катушки m-фазной обмотки 12 якоря выполняются из обмоточного медного провода или обмоточной медной шины. Ротор при помощи подшипников 11, вала 5 и подшипниковых щитов 10 позиционирован относительно статора. Вал 5 выполнен немагнитным, например из немагнитной стали или титана. На валу 5 насажена втулка 6, выполненная из магнитомягкой стали с высокой магнитной проницаемостью и являющаяся магнитопроводом ротора. На втулке 6 закреплены нечетные 7 и 9 пакеты и четный 8 пакет ротора, которые позиционированы относительно нечетных 1 и 3 пакетов и четного 2 пакета статора соответственно. Пакеты 7, 8 и 9 ротора выполнены шихтованными из изолированных листов электротехнической стали с высокой магнитной проницаемостью и содержат равномерно распределенные по цилиндрической поверхности зубцы 15, число которых на каждом пакете ротора одинаково. Четный 8 пакет ротора смещен относительно нечетных 7 и 9 пакетов ротора в тангенциальном направлении на половину зубцового деления пакета ротора tZ2. С целью удешевления конструкции пакеты 7, 8 и 9 ротора могут быть выполнены металлообработкой из цельных кусков стали с высокой магнитной проницаемостью. Между пакетами 1, 2 и 3 статора расположена обмотка возбуждения индуктора, выполненная в виде двух охватывающих втулку 6 между пакетами 7, 8 и 9 ротора кольцеобразных катушек 16 и 17 с продольной осью, совпадающей с продольной осью машины. Кольцеобразные катушки 16 и 17 выполняются из обмоточного медного провода или обмоточной медной шины и могут быть соединены между собой последовательно или параллельно. Концы обмотки возбуждения индуктора соединяются с источником постоянного (выпрямленного) напряжения.
В случае конструкции бесконтактной редукторной электрической машины с электромагнитным возбуждением с внутренним статором и внешним ротором (фиг.2) роль корпуса играет магнитопровод 6 ротора, а кольцеобразные катушки обмотки возбуждения индуктора охватывают магнитопровод 4 статора.
Бесконтактная редукторная электрическая машина с электромагнитным возбуждением работает в двигательном и генераторном режимах.
Рассмотрим двигательный режим (фиг.1, фиг.3, фиг.5, фиг.7, фиг.9, фиг.11, фиг.13). На обмотку возбуждения индуктора подают постоянное (выпрямленное) напряжение, по обмотке протекает постоянный (выпрямленный) электрический ток, создавая постоянное магнитное поле индуктора с постоянной во времени МДС индуктора и постоянным магнитным потоком индуктора, униполярно замыкающимся через магнитопровод 6 ротора, пакеты 7, 8 и 9 ротора, воздушный зазор между ротором и статором, пакеты 1, 2 и 3 статора и магнитопровод 4 статора. Зубцы 15 нечетных пакетов 7 и 9 ротора намагничиваются и образуют полюса одной полярности, например, южные полюса «S», а зубцы 15 четного пакета 8 ротора намагничиваются и образуют полюса другой полярности, например, северные полюса «N». На фазы m-фазной обмотки 12 якоря подают переменное напряжение, по m-фазной обмотке 12 якоря протекает переменный электрический ток, создающий переменное вращающееся магнитное поле якоря. При этом образуется переменная во времени МДС якоря и переменный во времени магнитный поток якоря. На фиг.4, фиг.6, фиг.8, фиг.10, фиг.12, фиг.14 представлены векторные диаграммы электрических токов 18 для соответствующих m-фазных обмоток 12 якоря, представленных на этих же чертежах. Симметричные m-фазные напряжения, поданные на зажимы m-фазных обмоток 12 якоря, изменяются во времени, и векторы электрических токов 18 поворачиваются в осях координат xy против часовой стрелки. Рассмотрим момент времени, когда электрические токи проецируются на ось ординат. Катушки m-фазной обмотки 12 якоря названы буквой, обозначающей принадлежность к соответствующей фазе, и цифрой, обозначающей номер соответствующих явно выраженных полюсов 13 пакетов 1, 2 и 3 статора. Например, катушка В2 - катушка фазы В, расположенная на вторых явно выраженных полюсах 13 пакетов 1, 2 и 3 статора. На фиг.4, фиг.6, фиг.8, фиг.10, фиг.12, фиг.14 обозначены направления электрических токов в катушках m-фазной обмотки якоря в соответствии с проекцией векторов электрических токов на ось y. При этом элементарные зубцы 14, расположенные на соответствующих явно выраженных полюсах 13 пакетов статора, на которых расположены катушки m-фазной обмотки 12 якоря, образуют южные полюса «S» и северные полюса «N». Вследствие взаимодействия переменного магнитного поля якоря с постоянным магнитным полем индуктора к ротору приложен однонаправленный в течение всего времени работы электрического двигателя вращающий момент, т.е. при изменении питающих m-фазных напряжений, поданных на m-фазную обмотку якоря с частотой f (Гц), ротор вращается с синхронной частотой вращения n=60·f/Z2 (об/мин). Направление вращения ротора на чертежах показано стрелкой с буквой «n». При Z1<Z2 ротор вращается согласно с магнитным полем якоря, а при Z1>Z2 ротор вращается против вращения магнитного поля якоря.
Рассмотрим генераторный режим (фиг.1, фиг.3, фиг.5, фиг.7, фиг.9, фиг.11, фиг.13). При вращении ротора сторонним источником момента с частотой вращения n постоянный магнитный поток индуктора, созданный протекающим по обмотке возбуждения индуктора постоянным (выпрямленным) электрическим током, пронизывая воздушный зазор и явно выраженные полюса 13 пакетов статора то со стороны ротора, то со стороны статора, создает в явно выраженных полюсах 13 пакетов статора переменный магнитный поток, наводящий в катушках m-фазной обмотки 12 якоря переменную ЭДС. Если внешняя цепь - цепь нагрузки замкнута, то по m-фазной обмотке 12 якоря протекает переменный электрический ток, электрическая мощность отдается потребителю.
Фазы m-фазной обмотки якоря могут быть соединены в звезду, а также в многоугольник.
При выполнении статора с числом пакетов более двух кольцеобразные катушки обмотки возбуждения индуктора могут быть соединены между собой последовательно, а также параллельно. При выполнении статора с нечетным числом пакетов, начиная с пяти, кольцеобразные катушки обмотки возбуждения индуктора могут быть соединены между собой смешанно.
Изобретение относится к области электротехники, в частности к низкооборотным электрическим двигателям, электроприводам и генераторам, касается особенностей конструктивного исполнения бесконтактных электрических машин с электромагнитной редукцией и может быть использовано в системах автоматики, в качестве мотор-колес, мотор-барабанов, стартер-генераторов, электроусилителей руля, прямых приводов в электробытовой технике, электроприводов большой и средней мощности судов, транспортных средств, бетоносмесителей, грузоподъемных механизмов, ленточных транспортеров, насосов для перекачки жидкостей, механизмов с высоким моментом на валу и низкими частотами его вращения, а также в качестве ветрогенераторов, гидрогенераторов, высокочастотных электрических генераторов и синхронных генераторов преобразователей частоты. Предлагаемая бесконтактная редукторная электрическая машина с электромагнитным возбуждением содержит зубчатый статор с нечетными и четными шихтованными из изолированных листов электротехнической стали с высокой магнитной проницаемостью пакетами с явно выраженными полюсами, на внутренней поверхности которых выполнены элементарные зубцы, причем пакеты статора в тангенциальном направлении расположены таким образом, что оси их находящихся друг против друга в аксиальном направлении явно выраженных полюсов всех пакетов статора совпадают, а между нечетными и четными пакетами статора расположена обмотка возбуждения индуктора, выполненная в виде кольцеобразных катушек с продольной осью, совпадающей с продольной осью машины, катушечную m-фазную обмотку якоря, каждая катушка которой размещена на соответствующих явно выраженных полюсах пакетов статора и охватывает по одному явно выраженному полюсу каждого пакета, и безобмоточный ферромагнитный ротор, содержащий немагнитный вал и магнитомягкую втулку на нем с нечетными и четными шихтованными из изолированных листов электротехнической стали с высокой магнитной проницаемостью пакетами с одинаковым числом зубцов на каждом пакете, причем четные пакеты ротора смещены относительно нечетных в тангенциальном направлении на половину зубцового деления пакета ротора. При этом выполненяются определенные соотношения между числом явно выраженных полюсов каждого пакета статора, числом элементарных зубцов на каждом явно выраженном полюсе пакета статора, числом явно выраженных полюсов каждого пакета статора в фазе, числом зубцов каждого пакета статора, числом зубцов каждого пакета ротора и числом фаз m-фазной обмотки якоря бесконтактной редукторной электрической машины с электромагнитным возбуждением. Технический результат от использования данного изобретения - обеспечение высоких энергетически и эксплуатационные показатели, большой удельный вращающий момент на валу и высокая электромагнитная редукция частоты вращения в режиме электрического двигателя, а также большой удельной мощности при высоких частотах ЭДС в режиме электрического генератора. 16 з.п. ф-лы, 15 ил., 1 табл.
1. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением, содержащая статор с корпусом из магнитомягкого материала с закрепленными в нем шихтованными из изолированных листов электротехнической стали с высокой магнитной проницаемостью пакетами статора, катушечную m-фазную обмотку якоря, обмотку возбуждения индуктора, расположенную между пакетами статора, немагнитный вал с втулкой, выполненной из магнитомягкой стали с высокой магнитной проницаемостью с закрепленными на ней шихтованными из изолированных листов электротехнической стали с высокой магнитной проницаемостью пакетами ротора, число которых равно числу пакетов статора, отличающаяся тем, что пакеты статора и ротора разделены на четные и нечетные, число пакетов статора не менее двух, длина крайних пакетов статора и ротора в аксиальном направлении одинакова, пакеты статора содержат равномерно распределенные по цилиндрической поверхности явно выраженные полюса, на внутренней поверхности которых выполнены элементарные зубцы, число явно выраженных полюсов на каждом пакете статора одинаково, число элементарных зубцов на каждом явно выраженном полюсе пакета статора одинаково, пакеты статора в тангенциальном направлении расположены таким образом, что оси их находящихся друг против друга в аксиальном направлении явно выраженных полюсов совпадают, пакеты ротора содержат равномерно распределенные по цилиндрической поверхности зубцы, число которых на каждом пакете ротора одинаково, четные пакеты ротора смещены относительно нечетных пакетов ротора в тангенциальном направлении на половину зубцового деления пакета ротора tZ2, на явно выраженных полюсах пакетов статора сосредоточена катушечная m-фазная обмотка якоря, каждая катушка которой в аксиальном направлении охватывает соответствующие явно выраженные полюса четных и нечетных пакетов статора по одному явно выраженному полюсу каждого пакета, причем число фаз катушечной m-фазной обмотки якоря m=3, 4, 5, 6…, обмотка возбуждения индуктора выполнена в виде кольцеобразных катушек с продольной осью, совпадающей с продольной осью машины, число кольцеобразных катушек обмотки возбуждения индуктора на одну меньше числа пакетов статора, ширина коронок зубцов пакетов ротора определяется выражением bZ2=k·tZ2, а ширина коронок элементарных зубцов, расположенных на явно выраженных полюсах статора, определяется выражением bZ1=k·tZ1, при этом tZ1 представляет собой зубцовое деление явно выраженных полюсов статора, а k=0,38÷0,5, число явно выраженных полюсов каждого пакета статора, определяется равенством Z1p=m·Z1m, где Z1m=1, 2, 3, 4… - число явно выраженных полюсов каждого пакета статора в фазе, число зубцов каждого пакета статора определяется равенством Z1=Z1p·Z1s, где Z1s=1, 2, 3, 4… - число элементарных зубцов на каждом явно выраженном полюсе пакета статора, число зубцов каждого пакета ротора определяется равенством Z2=Z1±Z1m.
2. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением по п.1, отличающаяся тем, что ширина коронок элементарных зубцов, расположенных на явно выраженных полюсах статора, определяется выражением bZ1=k·tZ2.
3. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением по п.1 или 2, отличающаяся тем, что при наличии пакетов статора более двух длина пакетов статора и ротора в аксиальном направлении, находящихся между крайними пакетами, в два раза больше длины крайних пакетов.
4. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением по п.1 или 2, отличающаяся тем, что статор расположен снаружи, ротор - внутри.
5. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением по п.1 или 2, отличающаяся тем, что ротор расположен снаружи, статор - внутри.
6. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением по п.1 или 2, отличающаяся тем, что при применении ее в качестве синхронного двигателя питание обмотки якоря осуществляется от m-фазного источника переменного напряжения постоянной частоты.
7. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением по п.1 или 2, отличающаяся тем, что при применении ее в качестве синхронного двигателя питание обмотки якоря осуществляется от m-фазного источника переменного напряжения регулируемой частоты.
8. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением по п.1 или 2, отличающаяся тем, что при применении ее в качестве синхронного двигателя питание обмотки якоря осуществляется от источника постоянного напряжения посредством управляемого инвертора, подающего синусоидальное напряжение на фазы обмотки якоря в зависимости от показаний датчика углового положения ротора для достижения максимального вращающего момента.
9. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением по п.1 или 2, отличающаяся тем, что при применении ее в качестве двигателя постоянного тока питание обмотки якоря осуществляется прямоугольными импульсами напряжения от электронного коммутатора по определенному алгоритму в зависимости от показаний датчика углового положения ротора для достижения максимального вращающего момента.
10. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением по п.1 или 2, отличающаяся тем, что при применении ее в качестве синхронного двигателя питание обмотки якоря осуществляется от однофазного источника переменного напряжения постоянной частоты при помощи фазосдвигающего элемента.
11. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением по п.1 или 2, отличающаяся тем, что фазы обмотки якоря соединены в звезду.
12. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением по п.1 или 2, отличающаяся тем, что фазы обмотки якоря соединены в многоугольник.
13. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением по п.1 или 2, отличающаяся тем, что питание обмотки возбуждения индуктора осуществляется непосредственно от независимого источника постоянного (выпрямленного) напряжения.
14. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением по п.1 или 2, отличающаяся тем, что питание обмотки возбуждения индуктора осуществляется через диодный m-фазный мост от выходных концов фаз m-фазной обмотки якоря.
15. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением по п.3, отличающаяся тем, что кольцеобразные катушки обмотки возбуждения индуктора соединены между собой последовательно.
16. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением по п.3, отличающаяся тем, что кольцеобразные катушки обмотки возбуждения индуктора соединены между собой параллельно.
17. Бесконтактная редукторная электрическая машина с электромагнитным возбуждением по п.3, отличающаяся тем, что при нечетном числе пакетов статора, начиная с пяти, кольцеобразные катушки обмотки возбуждения индуктора соединены между собой смешанно.
БЕСКОНТАКТНАЯ ИНДУКТОРНАЯ ВЕНТИЛЬНАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА С ЭЛЕКТРОМАГНИТНЫМ ВОЗБУЖДЕНИЕМ | 2004 |
|
RU2277284C2 |
БЕСКОНТАКТНЫЙ МОМЕНТНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ | 2005 |
|
RU2285322C1 |
СИНХРОННЫЙ РЕДУКТОРНЫЙ ДВИГАТЕЛЬ | 1991 |
|
RU2054220C1 |
ИНДУКТОРНАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА | 1992 |
|
RU2009599C1 |
US 3535604 A, 20.10.1970. |
Авторы
Даты
2010-12-20—Публикация
2009-02-17—Подача