Вихревые трубы позволяют увеличить извлечение этана, пропан-бутана и конденсата из природного газа примерно на 30% по сравнению с дросселированием [1, 2]. Однако они эффективно работают лишь при небольших диаметрах (до 50-70 мм), что не позволяет извлекать жидкие фракции из больших объемов природного газа.
Задача изобретения - разработать систему вихревых труб, позволяющих извлекать жидкие фракции из больших объемов природного газа.
Поставленная задача решается созданием системы вихревых труб для извлечения этана, пропан-бутана и конденсата из больших объемов природного газа, представляющих собой параллелепипед или куб, образованный параллельными вихревыми трубами (объединенными в секции), каждая из которых состоит из цилиндрического корпуса; тангенциального сопла подачи сжатого природного газа; диафрагмы с центрально расположенным в ней отверстием со стороны сопла (холодный конец трубы); дроссельного вентиля на противоположном конце трубы (горячий конец трубы), отличающаяся тем, что тангенциальное сопло каждой вихревой трубы соединено с магистральным газопроводом при помощи соединительного коллектора; холодные концы каждой вихревой трубы соединены соединительным коллектором с газопроводом, объединяющим холодные потоки газа и направляющим их в сепаратор для извлечения жидких фракций этана, пропан-бутана и конденсата; горячие концы каждой вихревой трубы соединены соединительным коллектором с газопроводом, объединяющим горячие потоки газа и направляющим их сначала в теплообменник для охлаждения, а затем - в сепаратор для извлечения жидких фракций этана, пропан-бутана и конденсата.
Система вихревых труб для извлечения этана, пропан-бутана и конденсата из больших объемов природного газа представлена на фиг.1 и фиг.2, где 1 - параллелепипед (или куб), образованный параллельными вихревыми трубами; 2 - вихревая труба; 3 - тангенциальное сопло подачи сжатого природного газа в вихревую трубу; 4 - цилиндрический корпус вихревой трубы; 5 - диафрагма с центрально расположенным в ней отверстием со стороны сопла (холодный конец трубы); 6 - дроссельный вентиль на противоположном конце трубы (горячий конец трубы); 7 - магистральный газопровод; 8 - соединительный коллектор, соединяющий каждую вихревую трубу с магистральным газопроводом; 9 - соединительный коллектор холодных концов каждой вихревой трубы с газопроводом, объединяющим холодные потоки газа; 10 - соединительный коллектор горячих концов каждой вихревой трубы с газопроводом, объединяющим горячие потоки газа; 11 - сепаратор для извлечения жидких фракций из холодного потока газа; 12 - сепаратор для извлечения жидких фракций из горячего потока газа; 13 - секция вихревых труб; 14 - теплообменник для охлаждения горячего потока газа; 15 - газопровод, объединяющий холодные потоки газа; 16 - газопровод, объединяющий горячие потоки газа.
Система вихревых труб для извлечения этана, пропан-бутана и конденсата работает следующим образом. Природный газ из магистрального газопровода 7 под высоким давлением распределяется по секциям 13 и далее подается в соединительные коллекторы 8, при помощи которых распределяется по всем вихревым трубам 2. При этом сжатый газ через тангенциальные сопла подачи сжатого газа 3 поступает в вихревые трубы 2, где происходит разделение газа на горячую и холодную составляющие. При этом, как показали исследования А.В.Мартынова и В.М.Бродянского [2], основная часть жидких фракций концентрируется в горячем конце вихревой трубы. Общее же извлечение жидких фракций из природного газа увеличивается примерно на 30% по сравнению с дросселированием [2]. После разделения природного газа на два потока (холодный и горячий) холодный поток направляется в сепаратор для извлечения жидких фракций этана, пропан-бутана и конденсата, а горячий поток поступает сначала в теплообменник для охлаждения, а затем - в сепаратор для извлечения жидких фракций этана, пропан-бутана и конденсата.
Осуществление изобретения
Система из 500-1000 вихревых труб позволит извлекать жидкие фракции этана, пропан-бутана и конденсата из больших объемов природного газа. Так, например, для извлечения жидких фракций из природного газа, подаваемого по магистральному газопроводу диаметром 1 метр, потребуется создать систему из 500 вихревых труб диаметром 45 мм.
Геометрические размеры отдельно взятой вихревой трубы, входящей в систему вихревых труб, могут быть предложены по результатам исследований Мартынова А.В. и Бродянского В.М. [2]:
внутренний диаметр - 45 мм;
диаметр отверстия диафрагмы - 25 мм;
длина трубы - 1900 мм;
длина горячего конца трубы - 1600 мм;
длина холодного конца трубы - 300 мм;
размеры сопла: ширина - 16,5 мм; высота - 8 мм.
Параметры природного газа перед трубой, по данным Мартынова А.В. и Бродянского В.М. [2]:
давление 14,5 МПа (145 кгс/см2);
температура - 55°С;
давление холодного потока - 28 кг/см2;
максимальное охлаждение газа - на 55-60°С;
расход газа - 390 тысяч кубометров в сутки при нормальных условиях.
По данным Мартынова А.В. и Бродянского В.М. [2], применение неадиабатной конической вихревой трубы с охлаждением горячего конца холодным потоком газа дает возможность повысить выход конденсата до 40%.
В качестве теплообменника 14 для охлаждения потока горячего газа может быть предложен вихревой теплообменник (патент RU №2338987 C1 / Шелудяков Е.П., опубл. 20.11.2008, бюл. №32), где в качестве охладителя может быть использован холодный газ, выходящий из холодного конца вихревой трубы.
Литература.
1. Патент RU №66699 U1, Сепаратор для получения гелия, а также этана и пропан-бутановой фракции из природного газа / Е.П.Шелудяков, опубл. 27.09.2007, бюл. №27.
2. Мартынов А.В., Бродянский В.М. «Что такое вихревая труба?», М.: Энергия, 1976.
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМА НЕАДИАБАТНЫХ ВИХРЕВЫХ ТРУБ ДЛЯ ИЗВЛЕЧЕНИЯ ЭТАНА, ПРОПАН-БУТАНА И КОНДЕНСАТА ИЗ БОЛЬШИХ ОБЪЕМОВ ПРИРОДНОГО ГАЗА | 2009 |
|
RU2413579C1 |
Способ и установка подготовки газа деэтанизации к транспортировке по газопроводу | 2015 |
|
RU2612235C1 |
СПОСОБ ВЫДЕЛЕНИЯ СЖИЖЕННЫХ УГЛЕВОДОРОДОВ ИЗ ПРИРОДНОГО ГАЗА | 1999 |
|
RU2168683C2 |
СПОСОБ СЖИЖЕНИЯ ВЫСОКОНАПОРНОГО ПРИРОДНОГО ИЛИ НИЗКОНАПОРНОГО ПОПУТНОГО НЕФТЯНОГО ГАЗОВ | 2012 |
|
RU2528460C2 |
СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА В ЦИКЛЕ ВЫСОКОГО ДАВЛЕНИЯ | 2020 |
|
RU2772461C2 |
СПОСОБ ОСУШКИ И ОЧИСТКИ ПРИРОДНОГО ГАЗА С ПОСЛЕДУЮЩИМ СЖИЖЕНИЕМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2012 |
|
RU2496068C1 |
СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА НА ОСНОВЕ ДРОССЕЛЬНОГО ЦИКЛА С ИСПОЛЬЗОВАНИЕМ ВИХРЕВЫХ ТРУБ | 2021 |
|
RU2776964C1 |
Способ извлечения этановой фракции из нефтяных газов при газлифтной добыче нефти | 1981 |
|
SU1011964A1 |
СПОСОБ ПОЛУЧЕНИЯ ИЗ ПОПУТНОГО ГАЗА БЕНЗИНОВ И СЖИЖЕННОГО ГАЗА | 2012 |
|
RU2509271C2 |
СПОСОБ СЕПАРАЦИИ И СЖИЖЕНИЯ ПОПУТНОГО НЕФТЯНОГО ГАЗА С ЕГО ИЗОТЕРМИЧЕСКИМ ХРАНЕНИЕМ | 2012 |
|
RU2507459C1 |
Система вихревых труб для извлечения этана, пропан-бутана и конденсата из больших объемов природного газа представляет собой параллелепипед или куб, образованный параллельными вихревыми трубами, объединенными в секции, каждая из которых состоит из цилиндрического корпуса; тангенциального сопла подачи сжатого природного газа; диафрагмы с центрально расположенным в ней отверстием со стороны сопла, дроссельного вентиля на противоположном конце трубы. Тангенциальное сопло каждой вихревой трубы соединено с магистральным газопроводом при помощи соединительного коллектора. Холодные концы каждой вихревой трубы соединены соединительным коллектором с газопроводом, объединяющим холодные потоки газа и направляющим их в сепаратор для извлечения жидких фракций этана, пропан-бутана и конденсата. Горячие концы каждой вихревой трубы соединены соединительным коллектором с газопроводом, объединяющим горячие потоки газа и направляющим их сначала в теплообменник для охлаждения, а затем в сепаратор для извлечения жидких фракций этана, пропан-бутана и конденсата. Использование изобретения позволит извлекать жидкие фракции из больших объемов природного газа. 2 ил.
Система вихревых труб для извлечения этана, пропан-бутана и конденсата из больших объемов природного газа представляет из себя параллелепипед или куб, образованный параллельными вихревыми трубами (объединенными в секции), каждая из которых состоит из цилиндрического корпуса; тангенциального сопла подачи сжатого природного газа; диафрагмы с центрально расположенным в ней отверстием со стороны сопла (холодный конец трубы); дроссельного вентиля на противоположном конце трубы (горячий конец трубы), отличающаяся тем, что тангенциальное сопло каждой вихревой трубы соединено с магистральным газопроводом при помощи соединительного коллектора; холодные концы каждой вихревой трубы соединены соединительным коллектором с газопроводом, объединяющим холодные потоки газа и направляющим их в сепаратор для извлечения жидких фракций этана, пропан-бутана и конденсата; горячие концы каждой вихревой трубы соединены соединительным коллектором с газопроводом, объединяющим горячие потоки газа и направляющим их сначала в теплообменник для охлаждения, а затем в сепаратор для извлечения жидких фракций этана, пропан-бутана и конденсата.
Способ изготовления брикетов из мелочи торфяного полукокса с добавкой связующих веществ | 1945 |
|
SU66699A1 |
Устройство для разделения углеводородных смесей | 1983 |
|
SU1161798A1 |
Установка для разделения газовых смесей | 1977 |
|
SU1267139A1 |
US 3672179 A, 27.06.1972 | |||
US 3775988 A, 04.12.1973. |
Даты
2011-01-27—Публикация
2009-11-02—Подача