СПОСОБ ОБРАБОТКИ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ Российский патент 2011 года по МПК B24B39/04 C10M141/00 

Описание патента на изобретение RU2412042C1

Изобретение относится к области механической обработки материалов, а именно к упрочнению поверхностей методом поверхностного пластического деформирования и приданию им особых свойств, может быть использовано в различных отраслях машиностроения, особенно в двигателестроении.

Известен способ упрочнения металлических поверхностей, при котором на поверхность наносят рельеф в виде периодических кольцевых канавок вдоль оси детали радиальным перемещением инструмента, отличающийся тем, что с целью повышения производительности деформирующему инструменту дополнительно сообщают колебательное движение в направлении, перпендикулярном его возвратно-поступательному перемещению вдоль оси, при этом частоту колебательного движения деформирующего инструмента выбирают равной 0,0005-0,025 частоты возвратно-поступательного перемещения деформирующего инструмента (см. авторское свидетельство №1263510, В24В 39/04, бюл. №38, 1986 г.).

Признаки, совпадающие - осуществляют поверхностное пластическое деформирование детали деформирующим инструментом, дополнительно сообщают ему колебательное движение вдоль оси детали.

Причины, препятствующие поставленной задаче, состоят в том, что нет возможности сформировать регулярный микрорельеф в виде пересекающихся волн заданной амплитуды и шага при одновременном создании на обработанной поверхности детали нанослоя, обладающего низким коэффициентом трения в широком диапазоне температур.

Известен способ обработки цилиндрических деталей, при котором осуществляют поверхностное пластическое деформирование вращающейся детали коническим роликом с постоянным радиальным усилием при сообщении ему движения подачи вдоль оси детали, при этом за счет обеспечения заданной направленности физико-механических и геометрических свойств поверхностного слоя детали пластическое деформирование осуществляют с переменным удельным давлением, причем конический ролик устанавливают перпендикулярно оси обрабатываемой детали и сообщают ему дополнительное движение подачи, перпендикулярное его основному перемещению и касательное к обрабатываемой поверхности (см. авторское свидетельство №1353596, В24В 30/04, бюл. №43, 1987 г.).

Признаки, совпадающие - осуществляют поверхностное пластическое деформирование вращающейся детали коническим роликом с постоянным радиальным усилием при сообщении ему движения подачи вдоль оси детали, причем ролик устанавливают перпендикулярно оси обрабатываемой детали и сообщают ему дополнительное движение подачи.

Причины, препятствующие поставленной задаче, состоят в том, что нет возможности сформировать регулярный микрорельеф в виде пересекающихся волн заданной амплитуды и шага с возможностью его изменения в процессе обработки при одновременном создании на обработанной поверхности детали нанослоя, обладающего низким коэффициентом трения в широком диапазоне температур.

За прототип принят известный способ обработки цилиндрических деталей, при котором осуществляют поверхностное пластическое деформирование вращающейся детали роликом с постоянным радиальным усилием при сообщении ему движения подачи вдоль оси детали, отличающийся тем, что ролику придают колебательные движения посредством линейного шагового привода относительно плоскости, перпендикулярной оси обрабатываемой детали, и дополнительно осуществляют возможность совершать возвратно-поступательные перемещения, параллельные его основному (см. патент РФ №2221686, В24В 39/00, 39/04, бюл. №2, 2004 г.).

Признаки, совпадающие - осуществляют поверхностное пластическое деформирование вращающейся детали роликом с постоянным радиальным усилием при сообщении ему движения подачи вдоль оси детали и колебательного движения посредством линейного шагового привода относительно плоскости, перпендикулярной оси обрабатываемой детали, при возможности совершать возвратно-поступательные перемещения, параллельные его основному.

Причины, препятствующие поставленной задаче, состоят в том, что нет возможности создания на обработанной поверхности детали устойчивого нанослоя, обладающего низким коэффициентом трения в широком диапазоне температур.

Задачей настоящего изобретения является возможность одновременного формирования при обработке цилиндрических деталей на поверхности регулярного микрорельефа и устойчивого железоуглеродойодистого нанослоя, обладающего низким коэффициентом трения в широком диапазоне температур.

Технический результат заключается в том, что в зону пластического деформирования непрерывно подают смазочно-плакировочную жидкостную композицию, содержащую компоненты в следующем соотношении (мас.%):

измельченный графит 2,5…3,0 кристаллический йод 0,05…0,08 минеральное масло остальное

Для достижения технического результата в способе обработки цилиндрических деталей, заключающемся в том, что осуществляют поверхностное пластическое деформирование вращающейся детали роликом с постоянным радиальным усилием при сообщении ему движения подачи вдоль оси детали и колебательного движения посредством линейного шагового привода относительно плоскости, перпендикулярной оси обрабатываемой детали, при возможности совершать возвратно-поступательные перемещения, параллельные его основному, в зону пластического деформирования непрерывно подают смазочно-плакировочную жидкостную композицию, содержащую компоненты в следующем соотношении (мас.%):

измельченный графит 2,5…3,0 кристаллический йод 0,05…0,08 минеральное масло остальное

Рассмотрим конкретный пример реализации заявляемого способа обработки цилиндрических деталей, заключающийся в нанесении на поверхность вращающейся детали регулярного микрорельефа поверхностным пластическим деформированием роликом с постоянным радиальным усилием при сообщении ему движения подачи вдоль оси детали и колебательного движения посредством линейного шагового привода относительно плоскости, перпендикулярной оси обрабатываемой детали, при возможности совершать возвратно-поступательные перемещения, параллельные его основному, и непрерывной подачи в зону деформирования из сопла предварительно приготовленной смазочно-плакировочной жидкостной композиции, содержащей компоненты в следующем соотношении (мас.%):

измельченный графит 2,5…3,0 кристаллический йод 0,05…0,08 минеральное масло остальное

В процессе пластического деформирования поверхностного слоя вращающейся детали ролик кинематически связан с шаговым приводом линейного перемещения, совершает колебательные перемещения относительно плоскости, перпендикулярной оси детали, при этом дополнительно имеет возможность возвратно-поступательного смещения в сторону воздействия привода шагового линейного перемещения, т.е. параллельно основному, а устройство для непрерывной подачи в зону деформирования смазочно-плакировочной жидкостной композиции, состоящее из бачка, шланга, штатива, сопла, зажимов и корыта, закрепляется на суппорте станка и перемещается вдоль оси детали со скоростью подачи деформирующего ролика. Таким образом, одновременно осуществляется нанесение на поверхность обрабатываемой детали регулярного микрорельефа с возможностью изменения его как по амплитуде, так и по шагу в процессе обработки, и создание на поверхности устойчивого железоуглеродойодистого нанослоя, обладающего низким коэффициентом трения в широком диапазоне температур эксплуатации детали. Это позволяет придать материалу поверхностного слоя обрабатываемой детали, эксплуатируемой при высоких температурах (до 800°С), особые свойства, а именно повысить усталостную прочность и стойкость поверхностному истиранию при одновременном воздействии регулярного микрорельефа и железоуглеродойодистого нанослоя.

Смазочно-плакировочная жидкостная композиция готовится следующим образом. В бачок наливается рассчитанное количество минерального масла (например, масло индустриальное И-20А ГОСТ 20799-88), добавляется требуемое количество измельченного графита и взбалтывается в течение 2-3 минут. Затем в композицию добавляют необходимое количество кристаллического йода, вновь взбалтывают в течение 2-3 минут, после чего полученная смазочно-плакировочная жидкостная композиция считается готовой к применению.

В качестве измельченного графита используют твердую графитовую смазку с размерами основной фракции не более 3 мкм. Добавление в смазочно-плакировочную жидкостную композицию кристаллического йода необходимо для повышения температурной устойчивости графита, являющегося твердой смазкой, так как с повышением температуры в результате физико-химических превращений активность йода повышается и образующиеся на его основе соединения приобретают свойства твердой смазки (см. Латышев В.Н., Наумов А.Г., Раднюк B.C., Тимаков А.С., Корчагин А.В. Применение йода как компонента СОТС при резании металлов. // Металлообработка, 2008, №3(45). - С.9-14).

В зоне деформирования при наличии графита и йода в материале поверхностного слоя обрабатываемой детали проходят физико-химические и структурные превращения, результатом которых является образование устойчивых кластерных наноструктур, содержащих железо, графит и йод и обладающих низким коэффициентом трения в широком диапазоне температур (от 20°С до 800°С). Толщина образующегося наноструктурного железоуглеродойодистого слоя составляет 60-80 нм. При этом созданный на поверхности детали регулярный микрорельеф в процессе эксплуатации выполняет функцию «масляных карманов» для образовавшихся кластерных наноструктур, увеличивая стойкость детали к поверхностному истиранию.

Отработанная и собранная в корыте смазочно-плакировочная жидкостная композиция после корректировки ее состава может быть использована повторно без дополнительной очистки.

Наиболее эффективный состав смазочно-плакировочной жидкостной композиции по входящим в нее компонентам определялся по результатам экспериментальных исследований (табл.1). Оценка эффективности смазочно-плакировочной жидкостной композиции осуществлялась по величине интенсивности изнашивания поверхностного слоя детали из стали 20ХН2МА при испытании ее на установке для исследования материалов на истирание (см. Бутенко В.И. Исследование качества обработанной поверхности стали. // Известия ВУЗ. Машиностроение, 1979, №4. - С.101-104). В качестве контртела использовались бруски из быстрорежущей стали Р6М5, закаленные до твердости HRC 62…65. Предварительно обрабатываемые детали из стали 20ХН2МА подвергались шлифованию и имели шероховатость Ra=0,40-0,80 мкм. Интенсивность изнашивания деталей, обработанных предлагаемым способом, определялась в режиме нормального износа весовым методом за время испытания 1 час. На каждом режиме проводилось 5 испытаний; после этого определялось среднее арифметическое значение интенсивности изнашивания детали.

На установке для испытания материалов в экстремальных условиях (см. Бутенко В.И. Контактное взаимодействие материалов при трении и резании. - Таганрог: Изд-во ТТИ ЮФУ, 2009. - 245 с.) проведены сравнительные испытания на истирание цилиндрических деталей из различных конструкционных материалов, обработанных по прототипу и по предлагаемому способу (табл.2), которые показали, что применение предлагаемого способа обработки цилиндрических деталей позволяет от 2 до 4 раз повысить стойкость поверхностного слоя к истиранию в зависимости от условий эксплуатации. При этом в зону контакта трущихся поверхностей деталей при их эксплуатации не надо дополнительно подавать смазку.

Таблица 1 Определение оптимального количества компонентов в смазочно-плакировочной жидкостной композиции Мас.% компонентов Условия испытания Интенсивность изнашивания I×10-4, г/ч Графит Кристаллический йод p, МПа Vск, м/с θ °C 0 0 0,5 0,3 20 12,8 1 0 0,5 0,3 20 12,4 2 0 0,5 0,3 20 12,1 3 0 0,5 0,3 20 11,8 0 0,05 0,5 0,3 20 12,2 0 0,06 0,5 0,3 20 11,3 0 0,08 0,5 0,3 20 11,0 1 0,06 0,5 0,3 20 10,9 2 0,06 0,5 0,3 20 7,5 2,5 0,06 0,5 0,3 20 6,2 3 0,06 0,5 0,3 20 5,8 3,5 0,06 0,5 0,3 20 7,6 2,5 0,07 0,5 0,3 20 5,7 2,5 0,08 0,5 0,3 20 5,6 0 0 1,0 0,5 200 35,9 2,5 0,06 1,0 0,5 200 17,4 3 0,08 1,0 0,5 200 17,2 3,5 0,08 0,5 0,3 300 18,3 2,5 0,07 0,5 0,3 300 9,5 0 0 0,5 0,3 300 31,7 0 0 1,0 0,5 400 40,8 2,5 0,07 1,0 0,5 400 11,6 3 0,08 1,0 0,5 400 16,4 3,5 0,08 1,0 0,5 400 17,0 4 0,07 1,0 0,5 400 11,7 2 0,06 1,0 0,5 400 18,3

Таблица 2 Определение эффективности предлагаемого способа обработки цилиндрических деталей Обрабатываемый материал Условия эксплуатации Интенсивность изнашивания I×10-4 г/ч p, МПа Vск, м/с θ °C Прототип Предлагаемый способ 12Х2Н4А 0,5 0,2 100 20,6 9,8 20ХН2МА 0,5 0,2 100 19,5 9,3 20ХН2МА 0,5 0,5 200 28,1 13,2 30ХГСА 1,0 0,5 200 32,6 14,5 30ХГСА 1,5 1,0 200 44,8 17,4 45Х25Н20С2 1,0 1,0 300 36,5 14,8 45Х25Н20С2 1,5 1,0 300 39,2 15,3 ХН70ВМТЮ 1,5 1,0 500 48,4 13,7 ХН70ВМТЮ 1,5 1,0 800 72,9 17,6 ХН77ТЮР-ВД 1,5 1,0 800 65,3 14,9

Таким образом, реализация заявляемого способа обработки цилиндрических деталей позволяет одновременно сформировать на поверхности детали регулярный микрорельеф в виде пересекающихся волн заданной амплитуды и шага с возможностью изменения их в процессе обработки и железоуглеродойодистый нанослой, обладающий низким коэффициентом трения в широком диапазоне температур эксплуатации. Одновременное формирование на поверхности обрабатываемой детали регулярного микрорельефа и железоуглеродойодистого нанослоя позволяет повысить усталостную прочность и стойкость к поверхностному истиранию при высоких температурах эксплуатации детали, что особенно важно в двигателестроении.

Похожие патенты RU2412042C1

название год авторы номер документа
СПОСОБ ПОВЕРХНОСТНОГО ПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ 2011
  • Бутенко Виктор Иванович
  • Кулинский Алексей Данилович
RU2500517C2
СПОСОБ ОБРАБОТКИ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ 2002
  • Бутенко В.И.
  • Диденко Д.И.
RU2221686C1
УСТРОЙСТВО ДЛЯ ПОВЕРХНОСТНО-УПРОЧНЯЮЩЕГО ОБКАТЫВАНИЯ ДЕТАЛЕЙ 2005
  • Бутенко Виктор Иванович
  • Диденко Дмитрий Иванович
RU2279965C1
УСТРОЙСТВО ДЛЯ УПРОЧНЯЮЩЕ-ЧИСТОВОГО ОБКАТЫВАНИЯ ДЕТАЛЕЙ 2001
  • Бутенко В.И.
  • Диденко Д.И.
RU2184024C1
УСТРОЙСТВО ДЛЯ УПРОЧНЯЮЩЕ-ЧИСТОВОГО ОБКАТЫВАНИЯ ДЕТАЛЕЙ 2001
  • Бутенко В.И.
  • Диденко Д.И.
RU2201323C2
УСТРОЙСТВО ДЛЯ УПРОЧНЯЮЩЕГО ОБКАТЫВАНИЯ ДЕТАЛЕЙ 2003
  • Бутенко В.И.
  • Диденко Д.И.
RU2234405C1
Способ поверхностного пластического деформирования 2017
  • Зайдес Семен Азикович
  • Нгуен Ван Хинь
  • Фам Дак Фыонг
RU2657263C1
СПОСОБ ПОВЕРХНОСТНОГО ПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ 2021
  • Зайдес Семен Азикович
  • Хо Минь Куан
RU2753807C1
СПОСОБ ЭЛЕКТРОСТАТИКОИМПУЛЬСНОЙ ОБРАБОТКИ 2005
  • Степанов Юрий Сергеевич
  • Киричек Андрей Викторович
  • Афанасьев Борис Иванович
  • Фомин Дмитрий Сергеевич
  • Карманов Александр Сергеевич
  • Пряхин Анатолий Анатолиевич
RU2296664C1
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОСТАТИКОИМПУЛЬСНОЙ ОБРАБОТКИ 2005
  • Степанов Юрий Сергеевич
  • Киричек Андрей Викторович
  • Афанасьев Борис Иванович
  • Фомин Дмитрий Сергеевич
  • Карманов Александр Сергеевич
  • Пряхин Анатолий Анатолиевич
RU2296663C1

Реферат патента 2011 года СПОСОБ ОБРАБОТКИ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ

Изобретение относится к области механической обработки материалов, а именно к упрочнению поверхностей методом поверхностного пластического деформирования. Осуществляют поверхностное пластическое деформирование вращающейся детали роликом с постоянным усилием при сообщении ему движения подачи вдоль оси детали. Осуществляют основное колебательное движение ролика посредством линейного шагового привода относительно плоскости, перпендикулярной оси обрабатываемой детали, и возвратно-поступательное перемещение, параллельное его основному движению. В зону поверхностного пластического деформирования непрерывно подают смазочно-плакировочную жидкостную композицию, содержащую компоненты в следующих соотношениях, мас.%: измельченный графит 2,5…3,0; кристаллический йод 0,05…0,08; минеральное масло - остальное. В результате получают поверхность детали, обладающую низким коэффициентом трения в широком диапазоне температур. 2 табл.

Формула изобретения RU 2 412 042 C1

Способ обработки цилиндрических деталей, включающий поверхностное пластическое деформирование вращающейся детали роликом с постоянным усилием при сообщении ему движения подачи вдоль оси детали и основного колебательного движения посредством линейного шагового привода относительно плоскости, перпендикулярной оси обрабатываемой детали, и возвратно-поступательных перемещений, параллельных его основному движению, отличающийся тем, что в зону поверхностного пластического деформирования непрерывно подают смазочно-плакировочную жидкостную композицию, содержащую компоненты в следующих соотношениях, мас.%:
Измельченный графит 2,5 - 3,0 Кристаллический йод 0,05 - 0,08 Минеральное масло Остальное

Документы, цитированные в отчете о поиске Патент 2011 года RU2412042C1

СПОСОБ ОБРАБОТКИ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ 2002
  • Бутенко В.И.
  • Диденко Д.И.
RU2221686C1
СОСТАВ ДЛЯ НАНЕСЕНИЯ АНТИФРИКЦИОННОГО ПОКРЫТИЯ НА ТРУЩИЕСЯ ПОВЕРХНОСТИ ДЕТАЛЕЙ 1992
  • Носихин П.И.
  • Стрельцов В.В.
RU2041253C1
Пластичная смазка 1976
  • Свишевская Галина Иосифовна
  • Степанянц Сурен Аванесович
  • Бутырина Людмила Константиновна
SU658165A1
JP 10017766 A, 20.01.1998
US 2006003904 A1, 05.01.2006.

RU 2 412 042 C1

Авторы

Бутенко Виктор Иванович

Даты

2011-02-20Публикация

2009-08-11Подача