ЗМЕЕВИКОВЫЙ ТЕПЛООБМЕННИК С ВЫПОЛНЕННЫМИ ИЗ РАЗНЫХ МАТЕРИАЛОВ ДЕТАЛЯМИ Российский патент 2011 года по МПК F28D7/02 

Описание патента на изобретение RU2413151C2

Настоящее изобретение относится к змеевиковому теплообменнику со множеством труб, навитых вокруг центральной трубы, и кожуха, ограничивающего внешнее пространство вокруг труб.

В рассчитанных на базисную нагрузку установках для сжижения природного газа его сжижают в непрерывном режиме в больших объемах. Природный газ сжижают преимущественно за счет его теплообмена с холодоносителем в змеевиковых (витых) теплообменниках. Однако известны и многие другие области применения змеевиковых теплообменников.

В змеевиковом теплообменнике его трубы в несколько слоев навиты по спирали вокруг центральной трубы. По меньшей мере по части труб пропускают первую среду, между которой и второй средой, протекающей во внешнем пространстве между трубами и охватывающим их кожухом, происходит теплообмен. На верхних концах теплообменника его трубы объединены в несколько групп и в виде пучков выведены из окружающего их внешнего пространства.

Подобные змеевиковые теплообменники и их применение, например, для сжижения природного газа описаны в каждой из указанных ниже публикаций:

- Hausen/Linde, Tieftemperaturtechnik, 2-е изд., 1985, сс.471-475,

- W. Scholz, "Gewickelte Rohrwärmeaustauscher", Linde-Berichte aus Technik und Wissenschaft, №33, 1973, сс.34-39,

- W. Bach, "Offshore-Erdgasverflüssigung mit Stickstoffkälte - Prozessauslegung und Vergleich von Gewickelten Rohr- und Plattenwärmetauschern", Linde-Berichte aus Technik und Wissenschaft, №64, 1990, сс.31-37,

- W. Förg и др., "Ein neuer LNG Baseload Prozess und die Herstellung der Hauptwärmeaustauscher, Linde-Berichte aus Technik und Wissenschaft", №78, 1999, сс.3-11 (публикация на английском языке: W. Förg и др., "A New LNG Baseload Process and Manufacturing of the Main Heat Exchanger", Linde Reports on Science and Technology, №61, 1999, cc.3-11),

- DE 1501519 A,

- DE 1912341 A,

- DE 19517114 A,

- DE 19707475 A,

- DE 19848280 A.

Компоненты и детали змеевиковых теплообменников, как известно, изготавливают либо из алюминия, либо из стали (высококачественной стали или специальной стали для работы при криогенных температурах).

В основу настоящего изобретения была положена задача удешевить изготовление подобных змеевиковых теплообменников и/или улучшить их технологические свойства.

Указанная задача решается благодаря тому, что первая и вторая детали змеевикового теплообменника выполнены из разных материалов и соединены между собой в месте соединения, которое состоит из материала первой детали как основного материала, и плакировано материалом, из которого изготовлена вторая деталь.

До настоящего времени возможность подобного подхода сознательно не рассматривалась по технологическим причинам. Более того, для изготовления всех деталей и компонентов змеевикового теплообменника стремились использовать один и тот же материал для возможности упростить их соединение друг с другом, прежде всего сваркой.

Согласно же изобретению было решено отказаться от этого принципа и использовать разные материалы в одном и том же теплообменнике. Подобное решение обеспечивает возможность дальнейшей оптимизации конструкции теплообменника, например, в отношении его объема, массы, прочности и/или стоимости, при сохранении возможности соединения деталей сверкой.

Первая и вторая детали теплообменника могут представлять собой одну из следующих деталей:

- центральную трубу, на которую навиты змеевиковые трубы,

- змеевиковую(-ые) трубу(-ы),

- участок змеевиковой трубы,

- трубную решетку (коллектор),

- кожух, который в качестве находящегося под давлением сосуда снаружи ограничивает теплообменник,

- распределитель жидкости и/или газа в окружающем внешнем пространстве трубы,

- перемычку между двумя слоями труб (распорку),

- кронштейн для подвесного крепления перемычек и

- рубашку между кожухом и (змеевиковыми) трубами. В соответствии с этим кожух теплообменника можно изготавливать, например, из стали, а трубы одного или нескольких их пучков можно изготавливать из алюминия.

При этом первая деталь может быть изготовлена, например, из стали, а вторая деталь - из алюминия. Под "алюминием" в данном контексте подразумевается не только чистый алюминий, но и любой его технически применимый сплав, например сплав с содержанием алюминия 50% или более, предпочтительно 80% или более. Под "сталью" в данном контексте подразумеваются все разновидности стали, например аустенитная, ферритная, полученная дуплекс-процессом, высококачественная (нержавеющая) и никельсодержащая сталь.

В одном из конкретных примеров вторая деталь может представлять собой группу труб в первом их слое, которые могут быть изготовлены из алюминия, а первая деталь может представлять собой, например, другую группу труб в том же или другом их слое, которые могут быть изготовлены из стали.

При соединении между собой первой и второй детали в месте соединения, выполненном в виде соединительной детали, эта соединительная деталь состоит из материала первой детали как основного материала и плакирована материалом, из которого изготовлена вторая деталь. Подобное выполнение соединительной детали позволяет приваривать ее и к первой детали, и ко второй детали.

Если место соединения представляет собой соединительную часть одной из двух деталей, то, в качестве примера осуществления изобретения, алюминиевые трубы (вторая деталь) можно сваривать с трубной решеткой (первая деталь) из высококачественной стали, плакированной алюминием. В качестве другого примера, наружный кожух змеевикового теплообменника может быть выполнен из стали, а внутренние детали, такие как трубы и соответствующие трубные решетки и коллекторы, - из алюминия. В местах соединения с трубами, трубными решетками и коллекторами кожух плакирован алюминием с обеспечением возможности сварки наружного кожуха с внутренними деталями в этих местах соединения.

Еще одним объектом настоящего изобретения является применение подобного теплообменника для косвенного теплообмена между содержащим углеводороды потоком и по меньшей мере одним тепло- или хладоносителем.

Содержащий углеводороды поток может при этом представлять собой, например, природный газ.

При косвенном теплообмене содержащий углеводороды поток сжижают, охлаждают, нагревают и/или испаряют. В предпочтительном варианте предлагаемый в изобретении теплообменник применяют для сжижения или испарения природного газа.

При сжижении природного газа обычно используют змеевиковые теплообменники из алюминия. В другом варианте теплообменники, используемые для сжижения природного газа, могут также изготавливаться из стали.

Ниже изобретение более подробно рассмотрено на примере одного из вариантов его осуществления со ссылкой на единственный прилагаемый к описанию чертеж, на котором схематично показан предлагаемый в изобретении змеевиковый теплообменник 1, предназначенный для сжижения потока природного газа 2 с получением сжиженного природного газа 3 путем косвенного теплообмена с тремя потоками хладагентов, а именно: с хладагентом 4 низкого давления, с первым хладагентом 5 высокого давления и со вторым хладагентом 6 высокого давления.

В рассматриваемом примере змеевиковый теплообменник имеет один единственный пучок труб с тремя группами труб. Трубы отдельных их групп попеременно спирально навиты разными слоями на общую центральную трубу. (Навивка труб соответствует общеизвестному принципу навивки труб змеевикового теплообменника, и поэтому точное взаимное геометрическое расположение труб на схематичном чертеже не показано.) В рассматриваемом примере трубы распределены по группам в соответствии с пропускаемыми по ним технологическими потоками. По трубам первой их группы 7 пропускают природный газ 2, а по трубам второй, соответственно третьей групп 8, 9 пропускают соответственно один из двух хладагентов 5, 6 высокого давления. Хладагенты высокого давления пропускают при этом снизу вверх, т.е. в прямотоке с природным газом. Хладагент 4 низкого давления проходит сверху вниз через окружающее трубы внешнее пространство, т.е. в противотоке к природному газу, и при этом испаряется. Испарившийся хладагент 10 низкого давления вновь выходит из окружающего трубы внешнего пространства на нижнем конце теплообменника.

В одном из конкретных примеров технологические потоки, пропускаемые через теплообменник, могут иметь следующие величины рабочего давления:

природный газ 2 120 бар хладагент 4 низкого давления 15 бар первый хладагент 5 высокого давления 60 бар второй хладагент 6 высокого давления 60 бар

Трубы (змеевики) изготовлены из легкого металла, например из алюминия или его сплава, и имеют в каждой их группе отличную от других групп толщину стенок. При этом во всех слоях трубы имеют одинаковый наружный диаметр.

В первом варианте, направленном на оптимизацию массы теплообменника, трубы имеют следующую толщину стенок:

трубы группы 7 1,4 мм трубы групп 8 и 9 0,9 мм

В другом варианте толщину стенок труб можно оптимизировать в отношении тепловых и гидравлических параметров и в отношении максимально возможной равномерности расположения труб в пучке с учетом при этом необходимых технологических параметров (например, заданных максимальных величин падения давления в отдельных технологических потоках). В этом втором варианте трубы имеют следующую толщину стенок:

трубы группы 7 1,4 мм трубы групп 8 и 9 1,2 мм

Во втором варианте использовали трубы одинаковой длины в отдельных их группах, что позволило оптимизировать теплообменник в отношении теплопередачи и экономической эффективности.

В данном варианте все змеевиковые трубы и центральная труба изготовлены из алюминия, а трубные решетки изготовлены из высококачественной стали и в местах их соединения со змеевиковыми трубами плакированы алюминием.

Похожие патенты RU2413151C2

название год авторы номер документа
ЗМЕЕВИКОВЫЙ ТЕПЛООБМЕННИК С ТРУБАМИ РАЗНОГО ДИАМЕТРА 2006
  • Штайнбауер Манфред
  • Шёнбергер Манфред
  • Кербер Кристиане
  • Хаммердингер Маркус
RU2402733C2
ЗМЕЕВИКОВЫЙ ТЕПЛООБМЕННИК 2006
  • Шенбергер Манфред Штефан
RU2402732C2
Витой теплообменник 2023
  • Мнушкин Игорь Анатольевич
  • Ерохин Евгений Викторович
  • Никитин Семен Петрович
RU2807843C1
Комбинированный аппарат для охлаждения газа 2019
  • Нозиков Никита Дмитриевич
  • Руденко Сергей Владимирович
  • Федосеев Павел Олегович
RU2703050C1
ВИТОЙ ТЕПЛООБМЕННИК 2021
  • Робертс, Марк Джулиан
  • Буковски, Джастин Дэвид
  • Вэйст, Аннемари Отт
RU2765593C1
СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА, ВКЛЮЧАЮЩИЙ ФАЗОВЫЙ ПЕРЕХОД 2013
  • Бонниссель Марк
  • Дю Парк Бертран
  • Болозье Борис
RU2613766C2
СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА ПО ЦИКЛУ ВЫСОКОГО ДАВЛЕНИЯ С ПРЕДОХЛАЖДЕНИЕМ ЭТАНОМ И ПЕРЕОХЛАЖДЕНИЕМ АЗОТОМ "АРКТИЧЕСКИЙ КАСКАД" И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2017
  • Минигулов Рафаиль Минигулович
  • Руденко Сергей Владимирович
  • Васин Олег Евгеньевич
  • Грицишин Дмитрий Николаевич
  • Соболев Евгений Игоревич
RU2645185C1
СПОСОБ И УСТАНОВКА ДЛЯ СЖИЖЕНИЯ ГАЗА 2020
  • Бауэр, Хайнц
  • Каманн, Мартин
  • Каммермайер, Фридерике
RU2798109C2
Способ сжижения природного газа 2023
  • Мнушкин Игорь Анатольевич
  • Ерохин Евгений Викторович
RU2811216C1
ПРОИЗВОДСТВО СПГ С УДАЛЕНИЕМ АЗОТА 2021
  • Вовар, Сильвэн
  • Буковски, Джастин Дэвид
  • Чэнь, Фэй
  • Робертс, Марк Джулиан
RU2764820C1

Иллюстрации к изобретению RU 2 413 151 C2

Реферат патента 2011 года ЗМЕЕВИКОВЫЙ ТЕПЛООБМЕННИК С ВЫПОЛНЕННЫМИ ИЗ РАЗНЫХ МАТЕРИАЛОВ ДЕТАЛЯМИ

Изобретение относится к области теплотехники и может быть использовано в установках для сжижения природного газа и, в частности, для изготовления змеевиковых теплообменников. В змеевиковом теплообменнике с множеством труб, навитых вокруг центральной трубы, и кожухом, ограничивающим внешнее пространство вокруг труб, его первая и вторая детали выполнены из разных материалов и соединены между собой в месте соединения, которое состоит из материала первой детали как основного материала и плакировано материалом, из которого изготовлена вторая деталь, при этом первая деталь изготовлена из стали, а вторая деталь изготовлена из алюминия. Первая и вторая детали могут быть выбраны из группы, включающей следующие детали: центральную трубу, трубы, участки труб, трубные решетки, кожух, распределители, перемычки между двумя слоями труб, кронштейны для подвесного крепления перемычек и рубашку между кожухом и трубами. 2 н. и 4 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 413 151 C2

1. Змеевиковый теплообменник со множеством труб, навитых вокруг центральной трубы, и кожухом, ограничивающим внешнее пространство вокруг труб, отличающийся тем, что его первая и вторая детали выполнены из разных материалов и соединены между собой в месте соединения, которое состоит из материала первой детали как основного материала и плакировано материалом, из которого изготовлена вторая деталь.

2. Теплообменник по п.1, отличающийся тем, что первая и вторая детали выбраны из группы, включающей следующие детали: центральную трубу, трубы, участки труб, трубные решетки, кожух, распределители, перемычки между двумя слоями труб, кронштейны для подвесного крепления перемычек и рубашку между кожухом и трубами.

3. Теплообменник по п.1 или 2, отличающийся тем, что первая деталь изготовлена из стали, а вторая деталь изготовлена из алюминия.

4. Применение теплообменника по одному из пп.1-3 для косвенного теплообмена между содержащим углеводороды потоком и, по меньшей мере, одним тепло- или холодоносителем.

5. Применение по п.4, отличающееся тем, что содержащий углеводороды поток представляет собой природный газ.

6. Применение по п.4 или 5, отличающееся тем, что содержащий углеводороды поток при косвенном теплообмене сжижают, охлаждают, нагревают и/или испаряют.

Документы, цитированные в отчете о поиске Патент 2011 года RU2413151C2

СПОСОБ ИЗГОТОВЛЕНИЯ ТЕПЛООБМЕННИКА 1990
  • Эндрю Джон Коттон[Us]
  • Зэлман Филип Зейперштейн[Us]
RU2043885C1
СПОСОБ ПАЙКИ АЛЮМИНИЯ С ЖАРОПРОЧНЫМИ СТАЛЯМИ И СПЛАВАМИ 1996
  • Семенов Виктор Никонорович
RU2101146C1
ТЕПЛООБМЕННАЯ СЕКЦИЯ АППАРАТА ВОЗДУШНОГО ОХЛАЖДЕНИЯ ГАЗА 2004
  • Овчар В.Г.
  • Даниленко В.Г.
  • Белоусов В.П.
  • Лифанов В.А.
  • Берестов В.А.
  • Терехов В.М.
  • Шляхов С.Б.
RU2266487C1
Приспособление к аппарату Дуайт-Ллойда для резки агломерата 1934
  • Мазель И.Н.
SU42299A1

RU 2 413 151 C2

Авторы

Спрееманн Юрген

Шёнбергер Манфред

Зеехольцер Кристоф

Каупп Эберхард

Бауер Штефан

Даты

2011-02-27Публикация

2006-07-06Подача