СПОСОБ ПОЛУЧЕНИЯ ВЯЖУЩЕГО Российский патент 2011 года по МПК C10C3/04 C10G1/10 

Описание патента на изобретение RU2415173C2

Изобретение относится к способам получения вяжущего, который может быть использован в дорожном строительстве.

Из области техники известен способ получения вяжущего путем окисления тяжелого нефтяного остатка (гудрона) и резиновой крошки при 240°С («Повышение качества битумов, полученных из гудрона», реферативная информация «Строительство и эксплуатация автомобильных дорог». №1, 1979, с.8). Однако качество полученного при этом вяжущего недостаточно вследствие низкого показателя сцепления вяжущего с минеральной частью, например с песком. Кроме того, технология процесса усложнена за счет применения специальных приспособлений для равномерного распределения резиновой крошки в массе гудрона.

Наиболее близким к изобретению техническим решением, принятым за прототип, является способ получения вяжущего путем окисления тяжелого нефтяного остатка в виде мазута (Авторское свидетельство СССР №925982, опубл. 07.05.82). При этом процесс проводят в присутствии 5-20 мас.% кислого гудрона при 180-200°С.

Недостатком прототипа является недостаточно высокое качество вяжущего вследствие недостаточно равномерного растворения резиновой крошки в смеси тяжелых нефтяных остатков.

В основу изобретения положена задача разработать такой способ получения вяжущего, в котором за счет предварительного, перед окислением кислородом воздуха, нагрева смеси тяжелых нефтяных остатков с резиновой крошкой путем термолиза при заданных температуре и времени и использования активирующей добавки резиновую крошку в смеси распределяют равномерно химическим путем, что повышает качество вяжущего.

Задача решается тем, что предлагается способ получения вяжущего, включающий нагрев и окисление кислородом воздуха тяжелых нефтяных остатков и резиновой крошки при заданной температуре, в котором, согласно изобретению, нагрев ведут путем термолиза исходной смеси тяжелого нефтяного остатка, смешиваемого с резиновой крошкой в соотношении 1:0,1-1, при температуре 350-375°С и перемешивании в течение 10-60 минут с использованием активирующей добавки, в качестве которой используют горючие сланцы и/или природные или синтетические цеолиты для полученной смеси в количестве 5-30 мас.% на смесь, а окисление кислородом воздуха производят при 230-300°С в течение 1-6 часов.

В заявленном способе перед окислением смеси тяжелых нефтяных остатков, например мазута, гудрона, смолы пиролиза, асфальта деасфальтизации и крекинг-остатков, с резиновой крошкой в соотношении 1:0,1-1 кислородом воздуха осуществляют термолиз при заданных температуре и времени, полученных опытным путем. В результате происходит химическое взаимодействие резиновой крошки с остальными компонентами. Использование в качестве активирующей добавки горючих сланцев и/или природных или синтетических цеолитов ускоряет как процесс термолиза, так и процесс окисления кислородом воздуха.

Способ осуществляют следующим образом. Автомобильные покрышки измельчают в двухвалковой ножевой дробилке до кусков размером 60 мм. Затем в высокоскоростной молотковой дробилке проводят дробление резиновых кусков с одновременным вытягиванием металлического и текстильного корда до размера менее 5 мм с удалением остатков металлокорда и текстильного корда. Выделенную на вибросите фракцию с размером частиц менее 2 мм смешивают с тяжелым нефтяным остатком (мазут, гудрон, смолы пиролиза, асфальт деасфальтизации, крекинг-остатки) и нагревают в реакторе при температуре 350-375°С при перемешивании в течение 10-60 минут с использованием активирующей добавки (горючие сланцы и/или природные или синтетические цеолиты) в количестве 5-30 мас.% на смесь. Затем проводят окисление продуктов термолиза воздухом при температуре 230-300°С в течение 1-6 часов.

Заявленный способ можно продемонстрировать на примерах.

Пример 1. В реактор загружают 100 кг мазута, 10 кг резиновой крошки (<2 мм) (соотношение мазут: резиновая крошка 1:0,1), 5,5 кг горючего сланца (5% от реакционной смеси) и нагревают при перемешивании 60 мин при температуре 350°С. Затем проводят окисление продуктов термолиза воздухом при 300°С в течение 6 час и получают однородное битумное вяжущее без образования окатышей с температурой кипения более 360°С с выходом 80,9%.

Пример 2. В реактор загружают 100 кг гудрона, 100 кг резиновой крошки (<2 мм) (соотношение мазут: резиновая крошка 1:1), 60 кг горючего сланца (30% от реакционной смеси) и нагревают при перемешивании 60 мин при температуре 375°С. Затем проводят окисление продуктов термолиза воздухом при 300°С в течение 6 час и получают однородное битумное вяжущее без образования окатышей с температурой кипения более 360°С с выходом 75,5%.

Пример 3. В реактор загружают 100 кг мазута, 15 кг резиновой крошки (<2 мм) (соотношение мазут: резиновая крошка 1:0,15), 11,5 кг горючего сланца (10% от реакционной смеси) и нагревают с перемешиванием 45 мин при температуре 350°С. Затем проводят окисление продуктов термолиза воздухом при 230°С в течение 1 часа и получают однородное битумное вяжущее без образования окатышей с температурой кипения более 360°С с выходом 76,3%.

Пример 4. В реактор загружают 100 кг мазута, 20 кг резиновой крошки (<2 мм) (соотношение мазут: резиновая крошка 1:0,2), 15 кг цеолита NaX (12,5% от реакционной смеси) и нагревают с перемешиванием 10 мин при температуре 375°С. Затем проводят окисление продуктов термолиза воздухом при 300°С в течение 6 час и получают однородное битумное вяжущее без образования окатышей с температурой кипения более 360°С с выходом 60,1%.

Пример 5. В реактор загружают 50 кг мазута, 50 кг смолы пиролиза, 20 кг резиновой крошки (<2 мм) (соотношение ТНО: резиновая крошка 1: 0,2), 12,0 кг горючего сланца (10% от реакционной смеси) и нагревают при перемешивании 45 мин при температуре 350°С. Затем проводят окисление продуктов термолиза воздухом при 250°С в течение 6 час и получают однородное битумное вяжущее без образования окатышей с температурой кипения более 360°С с выходом 77,5%.

Пример 6. В реактор загружают 100 кг асфальта деасфальтизации, 15 кг резиновой крошки (<2 мм) (соотношение мазут: резиновая крошка 1:0,15), 23,0 кг природного цеолита типа клиноптилолита (20% от реакционной смеси) и нагревают при перемешивании 60 мин при температуре 375°С. Затем проводят окисление продуктов термолиза воздухом при 300°С в течение 6 час и получают однородное битумное вяжущее без образования окатышей с температурой кипения более 360°С с выходом 78,9%.

Пример 7. В реактор загружают 100 кг крекинг-остатка, 20 кг резиновой крошки (<2 мм) (соотношение ТНО: резиновая крошка 1:0,2), 24 кг горючего сланца (20% от реакционной смеси) и нагревают при перемешивании 45 мин при температуре 350°С. Затем проводят окисление продуктов термолиза воздухом при 230°С в течение 6 час и получают однородное битумное вяжущее без образования окатышей с температурой кипения более 360°С с выходом 76,3%.

В табл.1 приведены данные по условиям проведения опытов и качеству полученных при этом вяжущих материалов.

Из таблицы 1 следует, что полученное согласно настоящему изобретению вяжущее превосходит по всем показателям качества вяжущее битума марки БНД 90/130 по ГОСТ 9128-97.

В табл.2 приведены характеристики асфальтобетона для верхнего слоя покрытия.

Таблица 2 Показатель Асфальтобетон на БНД 60/90 (5%) Асфальтобетон на вяжущем по настоящему изобретению (5%) Требования ГОСТ 9128-97 Прочность при сжатии, МПа, при 50°С 1,3 2,2 ≥1,3 при 20°С 4,5 5,7 ≥2,5 при 0°С 13,7 10,0 9,0-11,0 Модуль упругости при сжатии, МПа, при 50°С 120 200 при 0°С 2000 640 Прочность на сдвиг (раскол) при 0°С, МПа 3,6 3,7 - Водостойкость 0,8 1,00 0,85-0,95 Водостойкость при длительном водонасыщении 0,65 0,98 0,75-0,9 Водонасыщение, % 1,8 1,7 1,5-4,0

Из таблицы 2 следует, что асфальтобетонное дорожное покрытие, полученное с использованием вяжущего согласно заявленной технологии, по всем показателям превосходит асфальтобетон, полученный на БНД 60/90, а также требования ГОСТа 9128-97.

Анализ представленных результатов показывает, что заявленный способ позволяет получить вяжущее с повышенными физико-механическими свойствами, которые позволят использовать его для приготовления материалов, широко применяемых в дорожном строительстве.

Похожие патенты RU2415173C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ВЯЖУЩЕГО 2008
  • Нефедов Борис Константинович
  • Горлов Евгений Григорьевич
  • Горлова Евгения Евгеньевна
  • Андриенко Владимир Георгиевич
  • Ольгин Артем Александрович
RU2415172C2
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО БИТУМНОГО ВЯЖУЩЕГО ДЛЯ ДОРОЖНЫХ ПОКРЫТИЙ (ВАРИАНТЫ) 2016
  • Андриенко Владимир Георгиевич
  • Горлов Евгений Григорьевич
  • Горлова Евгения Евгеньевна
  • Донченко Валерий Анатольевич
  • Моисеев Валерий Андреевич
  • Моисеев Андрей Валерьевич
  • Омелюк Николай Михайлович
  • Дун Жуйкунь
RU2630529C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКИХ ПРОДУКТОВ 2006
  • Горлов Евгений Григорьевич
  • Головин Георгий Сергеевич
  • Нефедов Борис Константинович
RU2317316C1
СПОСОБ ПОЛУЧЕНИЯ ВЯЖУЩЕГО МАТЕРИАЛА 2011
  • Косарева Маргарита Александровна
  • Загайнов Владимир Семенович
  • Стуков Михаил Иванович
  • Онищук Николай Иванович
  • Кондратов Владимир Константинович
RU2484109C2
Битумно-резиновое вяжущее (варианты) для асфальтобетона и способ его получения с использованием СВЧ (варианты) 2020
  • Коновалов Николай Петрович
  • Вабищевич Кристина Юрьевна
  • Коновалов Петр Николаевич
  • Хозеев Евгений Олегович
RU2731176C1
Способ получения битумного вяжущего 1990
  • Антонишин Василий Иванович
  • Лемко Николай Ильич
  • Сидорук Аделя Антоновна
SU1736996A1
Способ получения вяжущего 1980
  • Махнин Александр Александрович
  • Фролов Александр Федорович
  • Красненкова Ольга Александровна
SU925982A1
СПОСОБ ПОЛУЧЕНИЯ БИТУМНО-ПОЛИМЕРНЫХ МАТЕРИАЛОВ 2003
  • Тахаутдинов Ш.Ф.
  • Щелков Ф.Л.
  • Хазипов Р.З.
  • Горбачев Н.Г.
  • Алфетонов Р.А.
  • Надыршин Р.Г.
  • Косоренков Д.И.
  • Лебедев И.Н.
RU2265033C2
АКТИВИРОВАННЫЙ МИНЕРАЛЬНЫЙ ПОРОШОК 2001
  • Щелков Ф.Л.
  • Хазипов Р.З.
  • Горбачев Н.Г.
  • Косоренков Д.И.
  • Лебедев И.Н.
RU2194679C1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРУЮЩЕЙ ДОБАВКИ ДЛЯ ГОРЯЧИХ АСФАЛЬТОБЕТОННЫХ СМЕСЕЙ 2014
  • Бондарь Виталий Викторович
  • Алексеенко Виктор Викторович
RU2572129C1

Реферат патента 2011 года СПОСОБ ПОЛУЧЕНИЯ ВЯЖУЩЕГО

Изобретение относится к способам получения вяжущего, который может быть использован в дорожном строительстве. Изобретение касается способа получения вяжущего, включающего нагрев и окисление кислородом воздуха тяжелых нефтяных остатков и резиновой крошки при заданной температуре, при этом нагрев ведут путем термолиза исходной смеси тяжелого нефтяного остатка, смешиваемого с резиновой крошкой в соотношении 1:0,1-1, при температуре 350-375°С и перемешивании в течение 10-60 минут, с использованием активирующей добавки, в качестве которой используют горючие сланцы и/или природные или синтетические цеолиты, для полученной смеси в количестве 5-30 мас.% на смесь, а окисление кислородом воздуха производят при 230-300°С в течение 1-6 часов. Технический результат - повышение качества вяжущего. 1 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 415 173 C2

1. Способ получения вяжущего, включающий нагрев и окисление кислородом воздуха тяжелых нефтяных остатков и резиновой крошки при заданной температуре, отличающийся тем, что нагрев ведут путем термолиза исходной смеси тяжелого нефтяного остатка смешиваемого с резиновой крошкой в соотношении 1:0,1-1 при температуре 350-375°С и перемешивании в течение 10-60 мин, с использованием активирующей добавки, в качестве которой используют горючие сланцы, и/или природные, или синтетические цеолиты, для полученной смеси в количестве 5-30 мас.% на смесь, а окисление кислородом воздуха производят при 230-300°С в течение 1-6 ч.

2. Способ по п.1, отличающийся тем, что в качестве тяжелых нефтяных остатков используют мазут, гудрон, смолы пиролиза, асфальт деасфальтизации, крекинг-остатки.

Документы, цитированные в отчете о поиске Патент 2011 года RU2415173C2

Способ получения вяжущего 1980
  • Махнин Александр Александрович
  • Фролов Александр Федорович
  • Красненкова Ольга Александровна
SU925982A1
Органоминеральная смесь, преимущественно для дорожного и аэродромного строительства 1989
  • Нийгер Федор Васильевич
  • Челядин Любомир Иванович
  • Тарабаринов Петр Васильевич
  • Попович Михаил Васильевич
SU1715758A1
СПОСОБ ПОЛУЧЕНИЯ ВЯЖУЩЕГО ДЛЯ ДОРОЖНОГО СТРОИТЕЛЬСТВА 1992
  • Бусел Алексей Владимирович[By]
  • Шевчук Вячеслав Владимирович[By]
  • Веренько Владимир Адольфович[By]
  • Козлов Геннадий Николаевич[By]
  • Тумащик Петр Иосифович[By]
  • Широков Евгений Иванович[By]
RU2049796C1
ВЯЖУЩЕЕ ДЛЯ ДОРОЖНОГО СТРОИТЕЛЬСТВА 2000
  • Илиополов С.К.
  • Болдырев В.И.
  • Мардиросова И.В.
  • Углова Е.В.
  • Котов В.Л.
  • Задорожний Д.В.
RU2186044C1
СПОСОБ ПОЛУЧЕНИЯ БИТУМНОГО ВЯЖУЩЕГО ИЗ КИСЛОГО ГУДРОНА 2006
  • Филиппова Ольга Павловна
  • Макаров Владимир Михайлович
  • Соловьева Ольга Юрьевна
  • Несиоловская Татьяна Николаевна
  • Тюрк Анна Михайловна
  • Макаров Михаил Михайлович
RU2323245C1
СПОСОБ ТЕРМОХИМИЧЕСКОЙ ПЕРЕРАБОТКИ ТЯЖЕЛЫХ НЕФТЯНЫХ ОСТАТКОВ 2005
  • Сыроежко Александр Михайлович
  • Проскуряков Владимир Александрович
  • Боровиков Геннадий Иванович
  • Маташкин Вадим Геогриевич
  • Петухова Оксана Николаевна
RU2288940C1
MX 2007013833 A, 28.01.2008
US 6380284 В1, 30.04.2002.

RU 2 415 173 C2

Авторы

Нефедов Борис Константинович

Горлов Евгений Григорьевич

Горлова Евгения Евгеньевна

Олесик Федор Николаевич

Андриенко Владимир Георгиевич

Ольгин Артем Александрович

Даты

2011-03-27Публикация

2008-10-02Подача