Изобретение относится к измерительной технике и может быть использовано, например, для определения радиальных зазоров между торцами лопаток вращающегося ротора и корпусом турбины при экспериментальных исследованиях и доводке газотурбинных двигателей (ГТД).
Зазоры между вращающимися деталями ротора и неподвижными деталями статора играют важную роль при работе ГТД. С одной стороны, их размер не должен быть менее некоторой величины, гарантирующей отсутствие касания деталей на всех режимах работы, с другой стороны, увеличение зазоров приводит к снижению ряда качественных показателей турбомашины. Для оптимизации величины зазора на всех режимах работы ГТД используются системы регулирования, например, путем температурных деформаций или перемещений корпусных вставок над лопатками вращающегося ротора турбины. Для успешного решения задачи активного регулирования зазоров необходимо экспериментально определять их поведение при изменении режимов работы ГТД.
Известны устройства для измерения зазоров при разных режимах работы узлов турбомашин в стендовых условиях, реализующие эндоскопический метод измерения, основанный на получении, с помощью эндоскопа и фотоаппарата, фотографического изображения зазора с известным масштабом, размер которого может быть легко измерен. Этот метод описан в статье Земцова Н.П. «Фотографирование радиального зазора между рабочими лопатками и корпусом турбины ГТД», журнал «Авиационная промышленность», 1978 г., №9, стр.37.
Однако при работе ГТД, из-за температурных и силовых деформаций, происходит перемещение лопаток ротора относительно корпуса в осевом направлении, что приводит к неопределенному изменению расстояния между эндоскопом и рабочими лопатками, что приводит к изменению масштаба изображения, снижающему точность измерения зазора.
Известен способ измерения величины зазора, учитывающий это изменение получением, с помощью стробоскопической подсветки, изображения торца лопатки в разных ее частях с разным масштабом и последующим расчетным определением истинного размера зазора. Этот способ описан в АС SU №1311359 Андреева А.В., Асланяна Э.В. и Лебедева В.А. «Способ определения радиального зазора между торцами лопаток вращающегося ротора и корпусом турбомашины», опубликовано 10.06.2000 г. Однако при измерениях в современных высокооборотных ГТД, при стробоскопических регистрациях изображения зазора, появляются дополнительные фазовые динамические погрешности. Лопатки и корпусные вставки имеют высокие (1000°C и более) температуры и сильно светятся сами, что затрудняет получение контрастных изображений зазора и окружающих его деталей, а следовательно, идентификации границ в изображении зазора для последующего его измерения.
Целью изобретения является повышение точности измерения радиального зазора эндоскопическим методом в высокотемпературных турбинах ГТД.
Поставленная цель достигается тем, что эндоскоп бокового зрения выполнен в виде двух перископических наблюдательного и осветительного зондов, формирующих параллельные пучки света, установленных в двух разнесенных отверстиях на корпусе турбины, при этом оптические оси зондов пересекаются в области измеряемого зазора и образуют с касательной плоскостью к поверхности спинки рабочей лопатки турбины у выходной кромки углы зеркального падения и отражения, причем осветительный зонд снабжен источником света сине-фиолетовой области спектра, а наблюдательный зонд содержит телекамеру с полосовым оптическим фильтром, имеющим пропускание в том же спектральном диапазоне.
На фиг.1 представлена схема заявленного устройства. Во внутреннем корпусе турбины выполнены два разнесенных отверстия, местоположение которых обозначено позициями: 5 - для установки наблюдательного зонда и 6 - для установки осветительного зонда.
На фиг.2 в качестве иллюстрации представлено изображение зазоров в окнах программы обработки видеоинформации с телекамеры.
Оптическая система наблюдательного и осветительного зондов одинакова и состоит из перископической призмы 4, герметично заделанной в металлическую трубу, двух линз 3, между которыми, на фокусных расстояниях, установлена диафрагма 2. На другом конце трубы наблюдательного зонда 5 установлена телекамера 1 с полосовым оптическим фильтром, а в осветительном зонде 6 помещен мощный светодиод, излучающий в сине-фиолетовом участке спектра. Спектральная область излучения светодиода выбрана из условия удовлетворительной чувствительности кремниевой матрицы телекамеры в коротковолновой области ее спектральной характеристики и максимального удаления от красной и ближней ИК области, где находится максимум спектральной области собственного излучения нагретых лопаток и корпусных элементов турбины.
Отверстия в корпусе турбины, в которых расположены осветительный 6 и наблюдательный 5 зонды, разнесены на расстояние, которое определено конструктивными условиями их размещения в корпусе турбины и требованиями триангуляционного условия формирования и регистрации изображения зазора.
Расположение выходящих из призмы 4 оптических осей зондов, ориентированных на спинку лопатки 7, выбирается из условия зеркального отражения от поверхности лопатки лучей осветителя в наблюдательный зонд, т.е. угол падения равен углу отражения по отношению к нормали к поверхности в выбранной области на лопатке. В качестве источника освещения использован мощный светодиод сине-фиолетового цвета с узкой спектральной характеристикой, а в приемном канале перед матрицей телекамеры установлен оптический интерференционный фильтр с пропусканием, соответствующим спектру излучения светодиода. Он существенно подавляет остальную часть собственного излучения нагретых поверхностей в турбинном узле, что обеспечивает контрастное изображение зазора.
Оптические системы зондов были выбраны такими, чтобы лучи, формирующие поле освещения, были практически параллельными, а лучи, формирующие изображение на матрице телекамеры, - телецентрическими (с малым углом расхождения, как в телескопе). Поле освещения, равное полю наблюдения, выбрано приблизительно в 1,5-2 раза больше, чем максимальный размер зазора (обычно это монтажный зазор, не превышающий в современных ГТД 2 мм). Наблюдательный зонд установлен так, чтобы в поле зрения телекамеры попадали: кромка вставки корпуса 8 и кромка спинки лопатки 7, у ее торца, а его оптическая ось была параллельна внутренней поверхности вставки 8 корпуса турбины.
Таким образом, устройство формирует изображение зазора при движущихся лопатках и фиксирует постоянное расстояние от регистрируемой поверхности лопатки до оптической системы наблюдательного зонда и не регистрирует другие части спинки лопатки, которые, в процессе вращения ротора, пересекают поле зрения наблюдательного зонда, но не освещены.
Торец вставки 8 и ее ребристая поверхность (фиг.1) освещается косыми (ненормально падающими) лучами осветительного зонда, поэтому в наблюдательный зонд попадает диффузная, а не зеркальная компонента отражения, в то время как от спинки лопатки 7 в наблюдательный зонд попадает зеркальная компонента. Но, во время вращения ротора, период наблюдения освещенной части спинки лопатки меньше периода прохождения шага лопаток мимо оси наблюдения. Скважность обычно лежит в интервале 5÷8. Поэтому осредненная яркость изображения спинки лопатки при ее вращении во столько же раз меньше, чем неподвижной при том же освещении. Поскольку диффузная компонента отражения меньше зеркальной в такой же порядок величин, то яркости изображения регистрируемых поверхностей торца вставки 8 и спинки лопатки 7, формирующие изображение зазора при вращении ротора, получаются близкими. Эти особенности триангуляционного способа формирования изображения зазора, при движущихся лопатках, повышают качество изображения зазора, что адекватно повышению точности измерения.
На фиг.2 в качестве иллюстрации представлены исходные изображения зазора в окне компьютерной программы обработки видеосигнала с телекамеры. В левом окне - полученный минимальный зазор при вращающемся роторе, в правом - начальный зазор при неподвижном роторе. В правом верхнем углу окна программы указаны текущие значения зазоров (Ch1 и Ch2). Компьютерная программа, по выбранной оператором ограниченной зоне анализа (показано белым прямоугольником), производит осреднение функции распределения яркости изображения зазора по его длине. Выделяются координаты этой функции в точках максимальных градиентов, и по расстоянию между этими координатами, с учетом масштаба изображения, определяется величина зазора.
название | год | авторы | номер документа |
---|---|---|---|
ОПТИКО-ТЕЛЕВИЗИОННОЕ УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ВИЗУАЛЬНОГО КОНТРОЛЯ И ИЗМЕРЕНИЯ ЛИНЕЙНЫХ РАЗМЕРОВ | 2011 |
|
RU2480799C2 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАДИАЛЬНОГО ЗАЗОРА МЕЖДУ КОНЦАМИ ЛОПАТОК ВРАЩАЮЩЕГОСЯ РОТОРА И СТАТОРОМ ТУРБОМАШИНЫ | 2008 |
|
RU2375675C1 |
СПОСОБ ФЛУОРЕСЦЕНТНОЙ ЭНДОСКОПИИ И УСТРОЙСТВО ЕГО РЕАЛИЗУЮЩЕЕ | 2000 |
|
RU2197168C2 |
ЛАЗЕРНЫЙ ПРОФИЛОМЕТР | 2008 |
|
RU2369835C1 |
СПОСОБ ДИАГНОСТИКИ ВОЗБУДИТЕЛЕЙ ИНФЕКЦИОННЫХ И ПАРАЗИТАРНЫХ БОЛЕЗНЕЙ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1997 |
|
RU2123682C1 |
СПОСОБ ФЛУОРЕСЦЕНТНОЙ ЭНДОСКОПИИ И УСТРОЙСТВО ЕГО РЕАЛИЗУЮЩЕЕ | 2005 |
|
RU2290855C1 |
ИНФРАКРАСНЫЙ ЭНДОСКОП И СПОСОБ ВЫЯВЛЕНИЯ РАННЕЙ ПАТОЛОГИИ ПО ИЗОБРАЖЕНИЮ ИССЛЕДУЕМЫХ ТКАНЕЙ | 1994 |
|
RU2133584C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЭРОЗИОННОГО ИЗНОСА РАБОЧИХ ЛОПАТОК ПАРОВОЙ ТУРБИНЫ | 1992 |
|
RU2020411C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЛОПАТОЧНОЙ МАШИНЫ И ШЛИФОВАЛЬНЫЙ СТАНОК ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1996 |
|
RU2162782C2 |
СИСТЕМА И СПОСОБ МОНИТОРИНГА ЭЛЕМЕНТОВ ПРОТОЧНОЙ ЧАСТИ ТУРБИН | 2021 |
|
RU2762269C1 |
Изобретение относится к измерительной технике и может быть использовано для определения радиальных зазоров между торцами лопаток вращающегося ротора и корпусом турбины при экспериментальных исследованиях и доводке газотурбинных двигателей (ГТД). Устройство измерения радиального зазора между торцами лопаток вращающегося ротора и корпусом турбины газотурбинного двигателя содержит эндоскоп бокового зрения и регистратор изображения зазора. Эндоскоп бокового зрения выполнен в виде двух перископических наблюдательного и осветительного зондов, установленных в двух разнесенных отверстиях на корпусе турбины. При этом оптические оси зондов пересекаются в области измеряемого зазора и образуют с касательной плоскостью к поверхности спинки рабочей лопатки турбины у выходной кромки углы зеркального падения и отражения. Причем осветительный зонд снабжен источником света сине-фиолетовой области спектра, а наблюдательный зонд содержит телекамеру с полосовым оптическим фильтром, имеющим пропускание в том же спектральном диапазоне. Оптические системы зондов формируют параллельные пучки лучей освещения и наблюдения. Технический результат - повышение точности измерения в высокотемпературных турбинах ГТД. 2 ил.
Устройство измерения радиального зазора между торцами лопаток вращающегося ротора и корпусом турбины газотурбинного двигателя, содержащее эндоскоп бокового зрения и регистратор изображения зазора, отличающееся тем, что эндоскоп бокового зрения выполнен в виде двух перископических наблюдательного и осветительного зондов, установленных в двух разнесенных отверстиях на корпусе турбины, при этом оптические оси зондов пересекаются в области измеряемого зазора и образуют с касательной плоскостью к поверхности спинки рабочей лопатки турбины у выходной кромки углы зеркального падения и отражения, причем осветительный зонд снабжен источником света сине-фиолетовой области спектра, а наблюдательный зонд содержит телекамеру с полосовым оптическим фильтром, имеющим пропускание в том же спектральном диапазоне, а оптические системы зондов формируют параллельные пучки лучей освещения и наблюдения.
СПОСОБ ОПРЕДЕЛЕНИЯ РАДИАЛЬНОГО ЗАЗОРА МЕЖДУ ТОРЦАМИ ЛОПАТОК ВРАЩАЮЩЕГОСЯ РОТОРА И КОРПУСОМ ТУРБОМАШИНЫ | 1985 |
|
SU1311359A1 |
US 4326804 A, 27.04.1982 | |||
СПОСОБ ИЗМЕРЕНИЯ РАДИАЛЬНОГО ЗАЗОРА | 1988 |
|
SU1529877A1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАДИАЛЬНЫХ ЗАЗОРОВ | 1989 |
|
SU1829564A1 |
US 5497101 A, 05.03.1996 | |||
Устройство для измерения радиального зазора между лопатками и корпусом турбомашины | 1987 |
|
SU1585659A1 |
Авторы
Даты
2011-03-27—Публикация
2009-11-13—Подача