ИЗНОСОСТОЙКИЙ ЧУГУН Российский патент 2011 года по МПК C22C37/04 C22C37/10 

Описание патента на изобретение RU2416660C1

Изобретение относится к литейному производству, а именно к изысканию износостойкого чугуна с шаровидным графитом для производства деталей, предназначенных для работы в условиях ударно-абразивного износа, в частности для изготовления мелющих шаров рудомольных мельниц.

Известен чугун, содержащий, мас.%: углерод 3,2-3,6; кремний 1,0-1,4; марганец 0,8-1,2; никель 3,0-4,0; медь 0,8-1,2; хром 0,2-0,4; молибден 3,5-4,5; алюминий 0,1-0,2; фосфор 0,05-0,1; титан 0,2-0,4; магний 0,003-0,008; железо - остальное (RU №2006127621, C22C 37/10, 2006 г.).

Недостатком этого чугуна является низкая твердость в литом состоянии. В связи с этим известный чугун в литом состоянии не имеет необходимой стойкости в условиях ударно-абразивного износа.

Известен чугун с шаровидным графитом, выбранный в качестве прототипа по содержанию входящих компонентов и имеющий следующий состав, мас.%: углерод 2,7-3,7; кремний 2,5-3,5; марганец 0,8-1,2; магний 0,04-0,08; церий 0,27-0,37; нитриды алюминия 0,05-0,15; бор 0,04-0,06; молибден 5,0-6,0; цирконий 0,3-0,5; железо - остальное (RU №2006108644, C22C 37/10, 2006 г.).

Указанный чугун с шаровидным графитом обладает необходимыми свойствами только после сложной термической термообработки (высокотемпературный отжиг).

Задачей предложенного изобретения является создание износостойкого чугуна с шаровидным графитом с высокой твердостью в литом состоянии (без применения термообработки) для работы в условиях ударно-абразивного износа.

Технический результат, достигаемый при реализации предложенного технического решения, состоит в повышении ударно-абразивной стойкости чугуна в литом состоянии, предназначенного для изготовления износостойких отливок с повышенной твердостью, например мелющих шаров рудоразмольных мельниц.

Указанный технический результат обеспечивается тем, что в предложенном износостойком чугуне с шаровидным графитом, содержащем углерод, кремний, марганец, магний, церий, бор, молибден, железо, дополнительно введены алюминий, ванадий, медь, никель, кальций при следующем соотношении компонентов, мас.%: углерод 2,8-4,2; кремний 1,5-3,5; ванадий 0,2-0,8; медь 0,2-0,8; никель 2,0-5,0; марганец 0,2-1,6; магний 0,02-0,1; алюминий 0,1-0,5; церий 0,02-0,2; кальций 0,06-0,8; бор 0,2-0,4; молибден 4,0-12,0; железо - остальное.

Введение в состав предложенного чугуна алюминия способствует увеличению количества эффективных зародышей кристаллизующего графита, что способствует повышению качества прочностных характеристик чугуна.

Добавка в состав предложенного чугуна алюминия менее 0,1% не обеспечивает образования достаточного количества эффективных зародышей кристаллизующего графита, в результате чего не повышаются прочностные характеристики чугуна. Увеличение количества алюминия свыше 0,5% способствует образованию плен оксида алюминия, в результате чего снижаются прочностные характеристики чугуна.

Введение в состав предложенного чугуна ванадия способствует обеднению аустенита углеродом за счет образования карбидов ванадия, благодаря чему повышается температура начала мартенситного превращения, и часть остаточного аустенита превращается в мартенсит, при этом доля остаточного аустенита снижается и соответственно повышается прочность, твердость и износостойкость чугуна.

Добавка в состав предложенного чугуна ванадия менее 0,2% не обеспечивает выделения достаточного количества карбидов ванадия, не изменяет долю остаточного аустенита, в результате чего не повышается твердость чугуна. Увеличение количества ванадия свыше 0,8% препятствует образованию структурно-свободного углерода в виде шаровидного графита, что повышает склонность чугуна к образованию трещин.

Введение в состав предложенного чугуна меди позволяет повысить его вязкость и прочность за счет растворения меди в металлической основе.

Добавка меди в состав предложенного чугуна менее 0,2% не обеспечивает достаточной концентрации меди в металлической основе для существенного повышения значений вязкости и прочности чугуна. Увеличение содержания меди свыше 0,8% способствует выделению по границам зерен структуры чугуна металлической меди, в результате чего понижаются его вязкость и прочность.

Введение в состав предложенного чугуна никеля позволяет получать его металлическую основу мартенситной, в результате чего повышается твердость чугуна.

Добавка в состав предложенного чугуна никеля менее 2% не обеспечивает достижения достаточной концентрации никеля в аустените, что способствует частичному распаду аустенита при охлаждении в троостит, в результате чего снижается прочность, твердость и износостойкость чугуна. Увеличение содержания никеля свыше 5% способствует повышению доли остаточного аустенита в металлической основе чугуна, что приводит к снижению его твердости и износостойкости.

Введение в состав предложенного чугуна кальция способствует десульфурации чугуна и препятствует образованию соединения окиси магния, при образовании которого снижается количество магния, необходимого для модифицирования чугуна.

Добавка в состав предложенного чугуна кальция менее 0,04% повышает количество магния, необходимого для модифицирования. При содержании кальция свыше 0,8% резко увеличивается количество неметаллических включений, в результате чего понижается прочность чугуна.

Увеличение содержания молибдена в составе предложенного чугуна позволяет существенно повысить количество карбидов молибдена, благодаря которым увеличивается твердбсть чугуна.

Добавка в состав предложенного чугуна молибдена менее 4% способствует образованию карбидов молибдена типа MoC, которые имеют твердость по сравнению с твердостью карбидов молибдена типа Mo2C в 1,5 раза меньше. Увеличение содержания молибдена свыше 12% способствует образованию крупных заэвтектических карбидов молибдена Мо2С, в результате чего снижаются прочностные характеристики чугуна.

Плавку чугуна проводят в индукционных или дуговых электропечах с использованием стандартных шихтовых материалов. Легирующие элементы - никель, молибден, медь и ванадий вводят в металлозавалку. После расплавления шихты и перегрева чугуна до 1500-1550°C на зеркало расплава вводят кремний и марганец в виде 75%-ного ферросилиция и 60%-ного ферромарганца. Затем присаживают алюминий и кальций (в виде 20%-ного силикокальция). Магний в составе сфероидизирующей присадки, а также церий и бор в виде ферроцерия и ферробора, кладут на дно разливочного ковша перед выпуском жидкого металла из печи.

Износостойкий чугун содержит структурно-свободный углерод в виде включений графита шаровидной формы в количестве 0,5-2,2% и связанный углерод в количестве 0,4-3,7%.

Химический состав, количество карбидов молибдена и включений шаровидного графита, твердость и относительная износостойкость известного (прототип) и предложенного чугунов приведены в таблице.

Техническим результатом является, как видно из данной таблицы, более высокая твердость (56-62 HRC) и соответственно износостойкость предлагаемого чугуна в сравнении с прототипом в литом состоянии. Твердость по Роквеллу определяли в соответствии с ГОСТ 9013-59.

Износостойкость в условиях ударно-абразивного изнашивания определяли по потери массы образцов (⌀18×18 мм) после проведения 12 циклов испытания длительностью 25 минут каждый. Испытания на ударно-абразивный износ проводили на лабораторной мельнице конструкции ЦНИИТМАШ. В качестве абразива использовали кварцевый песок определенной зернистости. За эталон принимали износ образцов, изготовленных из стали 20.

Применение предлагаемого износостойкого чугуна с шаровидным графитом для отливок, например мелющих шаров мельниц, используемых для дробления и размола молибденовых руд, позволяет существенно (50-70%) увеличит их срок службы в условиях ударно-абразивного изнашивания.

Чугун Содержание химических элементов, мас.% Количество шаровидного графита, % Количество карбидов Мо2С, % Твердость HRC K∗ C Si Mn Mo Ni Cu V Mg Ce AlN∗∗ Al B Ca Zr Предлагаемый 2,8 1,5 0,2 4,0 2,0 0,2 0,2 0,02 0,02 - 0,1 0,2 0,06 - 0,5 20 58 2,0 3,5 2,5 0,9 8,0 3,5 0,5 0,5 0,06 0,11 - 0,3 0,3 0,43 - 0,5 28 60 2,8 4,2 3,5 1,6 12,0 5,0 0,8 0,8 0,1 0,2 - 0,5 0,4 0,8 0,5 34 62 3,4 Прототип 3,2 3,0 1,0 5,5 - - - 0,06 0,32 0,1 - 0,5 - 0,4 0,5 16 50 1,6 Предлагаемый 2,8 1,5 0,2 4,0 2,0 0,2 0,2 0,02 0,02 - 0,1 0,2 0,06 - 2,2 12 54 1,8 3,5 2,5 0,9 8,0 3,5 0,5 0,5 0,06 0,11 - 0,3 0,3 0,43 - 2,2 18 58 2,2 4,2 3,5 1,6 12,0 5,0 0,8 0,8 0,1 0,2 - 0,5 0,4 0,8 - 2,2 26 60 2,8 Прототип 3,2 3,0 1,0 5,5 - - - 0,06 0,32 0,1 - 0,5 - 0,4 2,2 10 46 0,8 ∗ - коэффициент относительной стойкости в условиях ударно-абразивного износа.
∗∗ - нитрид алюминия.

Похожие патенты RU2416660C1

название год авторы номер документа
ИЗНОСОСТОЙКИЙ ЧУГУН 2010
  • Гущин Николай Сафонович
  • Полонский-Буслаев Александр Александрович
  • Чижова Татьяна Павловна
  • Морозова Ирина Рудольфовна
  • Юрьева Светлана Игоревна
  • Лобов Александр Владимирович
  • Анискин Валерий Николаевич
  • Терешин Денис Игоревич
  • Лобов Дмитрий Владимирович
  • Гущин Алексей Николаевич
  • Семенова Татьяна Николаевна
RU2419666C1
ИЗНОСОСТОЙКИЙ ЧУГУН 2009
  • Гущин Николай Сафонович
  • Чижова Татьяна Павловна
  • Морозова Ирина Рудольфовна
  • Лобов Александр Владимирович
  • Анискин Валерий Николаевич
  • Лобов Дмитрий Владимирович
  • Терешин Денис Игоревич
RU2401317C1
ИЗНОСОСТОЙКИЙ ЧУГУН 2011
  • Гущин Николай Сафонович
  • Нуралиев Фейзулла Алибала Оглы
  • Олейников Дмитрий Владиславович
  • Тимофеев Александр Михайлович
  • Данилова Анастасия Павловна
  • Лобов Владимир Николаевич
  • Дуб Алексей Владимирович
  • Карапоткин Вячеслав Васильевич
RU2465362C1
ИЗНОСОСТОЙКИЙ ЧУГУН 2011
  • Гущин Николай Сафонович
  • Нуралиев Фейзулла Алибала Оглы
  • Олейников Дмитрий Владиславович
  • Тимофеев Александр Михайлович
  • Свирин Владимир Ильич
  • Лобов Владимир Николаевич
  • Дуб Алексей Владимирович
  • Карапоткин Вячеслав Васильевич
  • Петрова Галина Петровна
RU2451100C1
ИЗНОСОСТОЙКИЙ ЧУГУН 2009
  • Гущин Николай Сафонович
  • Чижова Татьяна Павловна
  • Морозова Ирина Рудольфовна
  • Лобов Александр Владимирович
  • Анискин Валерий Николаевич
  • Лобов Дмитрий Владимирович
  • Терешин Денис Игоревич
RU2401316C1
ИЗНОСОСТОЙКИЙ ЧУГУН 2011
  • Гущин Николай Сафонович
  • Нуралиев Фейзулла Алибала Оглы
  • Гулак Ольга Николаевна
  • Находкин Валерий Михайлович
  • Бекишева Ольга Петровна
  • Гущина Ольга Владимировна
  • Олейников Дмитрий Владиславович
  • Зайчикова Анастасия Михайловна
  • Чижов Николай Владимирович
RU2451099C1
ИЗНОСОСТОЙКИЙ ЧУГУН 2011
  • Гущин Николай Сафонович
  • Нуралиев Фейзулла Алибала Оглы
  • Гулак Ольга Николаевна
  • Находкин Валерий Михайлович
  • Бекишева Ольга Петровна
  • Гущина Ольга Владимировна
  • Олейников Дмитрий Владиславович
  • Зайчикова Анастасия Михайловна
  • Морозов Александр Борисович
RU2448183C1
ИЗНОСОСТОЙКИЙ ЧУГУН С ШАРОВИДНЫМ ГРАФИТОМ 2013
  • Гущин Николай Сафонович
  • Дуб Алексей Владимирович
  • Дурынин Виктор Алексеевич
  • Нуралиев Фейзулла Алибала Оглы
  • Лучинина Галина Евгеньевна
  • Небогаткина Антонина Александровна
  • Небогаткин Владимир Михайлович
  • Тахиров Асиф Ашур Оглы
  • Минина Любовь Марковна
  • Стариков Валерий Владимирович
RU2526507C1
ИЗНОСОСТОЙКИЙ ЧУГУН С ШАРОВИДНЫМ ГРАФИТОМ 2013
  • Гущин Николай Сафонович
  • Дуб Алексей Владимирович
  • Дурынин Виктор Алексеевич
  • Нуралиев Фейзулла Алибала Оглы
  • Лучинина Галина Евгеньевна
  • Небогаткина Антонина Александровна
  • Небогаткин Владимир Михайлович
  • Тахиров Асиф Ашур Оглы
  • Минина Любовь Марковна
  • Стариков Валерий Владимирович
RU2511213C1
ИЗНОСОСТОЙКИЙ ЧУГУН 2010
  • Гущин Николай Сафонович
  • Бекишева Ольга Петровна
  • Гущина Ольга Владимировна
  • Гурьева Елена Васильевна
  • Находкин Валерий Михайлович
  • Морозов Александр Борисович
  • Гулак Ольга Николаевна
  • Чижов Николай Владимирович
  • Петрова Галина Петровна
RU2445388C1

Реферат патента 2011 года ИЗНОСОСТОЙКИЙ ЧУГУН

Изобретение относится к области литейного производства, в частности к износостойким чугунам для производства мелющих шаров размольных мельниц, подвергающихся ударно-абразивному износу. Износостойкий чугун с шаровидным графитом содержит, мас.%: углерод 2,8-4,2; кремний 1,5-3,5; ванадий 0,2-0,8; медь 0,2-0,8; никель 2,0-5,0; марганец 0,2-1,6; магний 0,02-0,1; алюминий 0,1-0,5; церий 0,02-0,2; кальций 0,06-0,8; бор 0,2-0,4; молибден 4,0-12,0; железо - остальное. Чугун обладает высокой стойкостью в условиях ударно-абразивного изнашивания. 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 416 660 C1

1. Износостойкий чугун с шаровидным графитом, содержащий углерод, кремний, марганец, церий, магний, бор, молибден и железо, отличающийся тем, что он дополнительно содержит алюминий, ванадий, медь, никель, кальций при следующем соотношении компонентов, мас.%:
углерод 2,8-4,2 кремний 1,5-3,5 ванадий 0,2-0,8 медь 0,2-0,8 никель 2,0-5,0 марганец 0,2-1,6 магний 0,02-0,1 алюминий 0,1-0,5 церий 0,02-0,2 кальций 0,06-0,8 бор 0,2-0,4 молибден 4,0-12,0 железо остальное

2. Износостойкий чугун по п.1, отличающийся тем, что он содержит структурно-свободный углерод в виде включений графита шаровидной формы в количестве 0,5-2,2% и связанный углерод в количестве 0,4-3,7%.

Документы, цитированные в отчете о поиске Патент 2011 года RU2416660C1

Износостойкий чугун 1991
  • Карпенко Михаил Иванович
  • Адамович Рем Николаевич
  • Соленова Татьяна Ивановна
  • Былинский Анатолий Петрович
SU1803461A1
Чугун для металлических форм 1990
  • Ковалевский Георгий Федорович
  • Карпенко Михаил Иванович
  • Марукович Евгений Игнатьевич
  • Бадюкова Светлана Михайловна
  • Науменко Василий Иванович
SU1724716A1
Высокопрочный чугун 1990
  • Святкин Борис Константинович
  • Карпенко Михаил Иванович
  • Ахунов Турсун Абдолимович
  • Егорова Марина Борисовна
  • Бадюкова Светлана Михайловна
SU1827395A1
Способ и приспособление для нагревания хлебопекарных камер 1923
  • Иссерлис И.Л.
SU2003A1
ЭЛЕКТРОИНДУКЦИОННАЯ ТЕРМИЧЕСКАЯ ОБРАБОТКА КОНЦА ТРУБЧАТОГО МАТЕРИАЛА 2007
  • Лавлесс Дон Л.
  • Росс Питер А.
  • Руднев Валерий И.
  • Ланг Джон Пол
RU2428821C2
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
Способ и приспособление для нагревания хлебопекарных камер 1923
  • Иссерлис И.Л.
SU2003A1

RU 2 416 660 C1

Авторы

Гущин Николай Сафонович

Полонский-Буслаев Александр Александрович

Чижова Татьяна Павловна

Морозова Ирина Рудольфовна

Юрьева Светлана Игоревна

Лобов Александр Владимирович

Анискин Валерий Николаевич

Терешин Денис Игоревич

Лобов Дмитрий Владимирович

Гущин Алексей Николаевич

Семенова Татьяна Николаевна

Даты

2011-04-20Публикация

2010-02-12Подача