Предлагаемое изобретение относится к области полимерных нанокомпозитов, микросистемной техники, авиационных и космических технологий, строительных материалов и может быть использовано для создания солнечных элементов, устройств на эффекте памяти формы, защитных и теплоотводящих пленочных покрытий и т.д.
Известен Способ изготовления газового сенсора (патент РФ №2336548 С2, МПК G03F 7/16 от 20.10.08), включающий формирование чувствительного элемента на основе композиционного материала, состоящего из полимерной матрицы, армированной частицами наполнителя, где в качестве материала полимерной матрицы используют фоточувствительные композиции. При этом формирование слоя материала нанокомпозита осуществляют на подложке методом центрифугирования из смеси раствора полимера в растворителе с частицами наполнителя, в качестве которого используют моно- или полидисперсные порошки углеродных нанотрубок (УНТ), фуллеренов, сажи, графита, наночастицы окиси олова. Термообработка слоя нанокомпозита осуществляется термическим методом при температуре, не выше температуры деструкции полимерной матрицы.
Общие операции с заявленным способом:
а) в качестве наполнителя используют УНТ;
б) растворение полимера в растворителе;
в) формирование слоя нанокомпозита осуществляют методом центрифугирования;
г) нанокомпозит формируют на подложке;
д) термообработку нанокомпозита осуществляют термическим методом при температуре, не выше температуры деструкции полимерной матрицы;
е) изготовление полимерной матрицы, состоящей из полимера и растворителя.
Причиной, препятствующей достижению технического результата, является то, что введение отдельных УНТ в полимерную матрицу методом центрифугирования не дает достаточной дисперсии частиц наполнителя по объему полимерной матрицы, из-за чего частицы наполнителя слипаются. А также описанный способ не позволяет получить ориентированные УНТ в объеме полимерной матрицы, из-за чего характеристики нанокомпозита ухудшаются.
Известен также Способ изготовления нанокомпозита одностенные углеродные нанотрубки (ОУНТ)/полимер (патент US 2008/0290020 A1, МПК G03F 7/16 от 27.11.08), включающий операции перемешивания углеродных нанотрубок (УНТ) в растворителе, ориентацию УНТ на фильтре методом фильтрации, изготовление полимерной матрицы, состоящей из полимера и растворителя, введение ориентированных углеродных нанотрубок в полимерную матрицу, удаление растворителя из композита и температурный нагрев композита в вакууме до температуры, большей температуры стеклования полимера. В данном способе возможно использование предварительно модифицированных УНТ химическими веществами, содержащими такие функциональные группы, как: амины, алканы, алкены, эфиры, серная, фосфорная, борная, карбоксильная кислота. Материалом полимерной матрицы может быть полиимид, полисульфон, целлюлозный ацетат, поликарбонат, полиметакрилат, другие термопластичные полимеры и другие стеклянные полимеры.
Общие операции с заявленным способом:
а) изготовление полимерной матрицы, состоящей из полимера и растворителя;
б) в качестве наполнителя используют УНТ;
в) растворение полимера в растворителе;
г) введение ориентированных УНТ в полимерную матрицу;
д) термообработку нанокомпозита осуществляют термическим методом при температуре, не выше температуры деструкции полимерной матрицы.
Недостатком этого способа является то, что метод фильтрации не дает достаточной ориентированности УНТ в объеме полимерной матрицы, из-за чего характеристики нанокомпозита ухудшаются.
Наиболее близким по технической сущности и достигаемому эффекту является Способ формирования композитов полимер/углеродные нанотрубки (патент US 2008/0306184 А1, МПК G21F 1/02 от 11.12.08), состоящих из полимерной матрицы, армированной ориентированным массивом УНТ. Согласно предложенному способу растворение полимера осуществляется в растворителе, после чего производится обработка ультразвуком находящихся в растворителе УНТ и введение ориентированных УНТ в полимерную матрицу. Из полученной смеси предлагается сформировать на подложке слой нанокомпозита методом центрифугирования и обработать его ультразвуком в течение времени, достаточного для распределения УНТ по всей матрице полимера, после чего производится термообработка нанокомпозита термическим методом при температуре, не выше температуры деструкции полимерной матрицы.
Общие операции с заявленным способом:
а) изготовление полимерной матрицы, состоящей из полимера и растворителя;
б) в качестве наполнителя используют УНТ;
в) растворение полимера в растворителе;
г) введение ориентированных УНТ в полимерную матрицу;
д) формирование нанокомпозита центрифугированием;
е) нанокомпозит формируют на подложке;
ж) термообработку нанокомпозита осуществляют термическим методом при температуре, не выше температуры деструкции полимерной матрицы.
Причиной, препятствующей достижению технического результата, является то, что метод обработки ультразвуком не позволяет получить достаточной ориентированности УНТ в объеме полимерной матрицы, из-за чего характеристики нанокомпозита ухудшаются.
Задачей, на решение которой направлено изобретение, является получение полимерного композита с ориентированным массивом углеродных нанотрубок с достаточной дисперсией УНТ по объему полимерной матрицы, чтобы углеродные нанотрубки не слипались, и большой степенью ориентированности УНТ в объеме полимерной матрицы для улучшения характеристик нанокомпозита, таких как повышенная устойчивость к радиационному облучению, механическая прочность и электропроводимость для приложений микросистемной техники, а также авиационных и космических приложений.
Для достижения технического результата при изготовлении полимерного композита с ориентированным массивом углеродных нанотрубок, состоящего из полимерной матрицы, армированной ориентированным массивом углеродных нанотрубок, производятся последовательные операции, включающие растворение полимера в растворителе, формирование на подложке слоя нанокомпозита центрифугированием из раствора полимера и его термообработку термическим методом при температуре, не выше температуры деструкции полимерной матрицы, причем в качестве наполнителя используют вертикально ориентированный массив углеродных нанотрубок, выращенный на подложке, и при формировании на подложке слоя нанокомпозита центрифугированием подложку располагают перпендикулярно плоскости вращения центрифуги.
Указанный способ реализуется следующим образом. На первом этапе изготовления полимерного композита с ориентированным массивом углеродных нанотрубок предлагается растворить полимер, используемый в качестве матрицы, в растворителе с целью регулирования его вязкости, т.е. способности полимера затекать между нанотрубками. На втором этапе предлагается сформировать слой нанокомпозита центрифугированием из раствора полимера на подложке с предварительно выращенным вертикально ориентированным массивом УНТ (например, по методу, предложенному П.В.Фурсиковым в статье Каталитический синтез и свойства углеродных нановолокон // International Scientific Journal for Alternative Energy and Ecology. - 2005. №1. С.24-40). При этом предлагается расположить подложку с выращенным массивом УНТ перпендикулярно плоскости вращения центрифуги для того, чтобы улучшить затекание растворенного на этапе 1 полимера между нанотрубками под действием центробежных сил. При этом улучшается адгезия полимера и нанотрубок и, следовательно, качество и характеристики получаемого нанокомпозита. На третьем этапе предлагается произвести термообработку термическим методом при температуре, не выше температуры деструкции полимерной матрицы, для затвердевания слоя полученного нанокомпозита.
При использовании в качестве наполнителя ориентированного массива УНТ нанотрубки находятся на определенном расстоянии друг от друга, что обеспечивает хорошую дисперсию УНТ по объему полимерной матрицы и отсутствие слипания отдельных УНТ в пучки. При этом исключается операция обработки ультразвуком на различных этапах изготовления нанокомпозита.
Технический результат может быть достигнут при использовании широкого класса полимеров в качестве полимерной матрицы. Материалом полимерной матрицы может быть полиимид, полисульфон, целлюлозный ацетат, поликарбонат, полиметакрилат, другие термопластичные полимеры и другие стеклянные полимеры.
Технико-экономические преимущества заявленного способа перед известными выражены в повышенных устойчивости к радиационному облучению, механической прочности, электропроводимости за счет создания нанокомпозита с лучшей ориентированностью УНТ и лучшей адгезией полимера и нанотрубок, а также упрощении технологического процесса изготовления нанокомпозита за счет исключения операции обработки ультразвуком.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛИМЕРНОГО КОМПОЗИТА С ОРИЕНТИРОВАННЫМ МАССИВОМ УГЛЕРОДНЫХ НАНОТРУБОК РЕГУЛИРУЕМОЙ ПЛОТНОСТИ | 2011 |
|
RU2478563C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛИМЕРНОГО КОМПОЗИТА НА ОСНОВЕ ОРИЕНТИРОВАННЫХ УГЛЕРОДНЫХ НАНОТРУБОК | 2013 |
|
RU2560382C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТА ПОЛИМЕР/УГЛЕРОДНЫЕ НАНОТРУБКИ НА ПОДЛОЖКЕ | 2009 |
|
RU2400462C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТА ПОЛИМЕР/УГЛЕРОДНЫЕ НАНОТРУБКИ | 2012 |
|
RU2495887C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО КОМПОЗИТА С НАНОМОДИФИЦИРОВАННЫМ НАПОЛНИТЕЛЕМ (ВАРИАНТЫ). | 2013 |
|
RU2602798C2 |
СПОСОБ ПОВЫШЕНИЯ ПРОЧНОСТИ НА РАЗРЫВ КОМПОЗИТНОГО МАТЕРИАЛА С ПОМОЩЬЮ ПРЕДВАРИТЕЛЬНОЙ ПРОПИТКИ УГЛЕВОЛОКОН | 2018 |
|
RU2703635C1 |
Способ повышения прочности на разрыв волокнистых композитов с помощью предварительной модификации углеволокон углеродными нанотрубками и молекулами, содержащими аминогруппы | 2019 |
|
RU2743566C1 |
Способ повышения прочности на разрыв волокнистых композитов с помощью упрочнения межфазной границы матрица-наполнитель углеволокон функционализированными углеродными нанотрубками | 2019 |
|
RU2743565C1 |
Композиционный материал с ориентированными углеродными нанотрубками | 2020 |
|
RU2746103C1 |
АНТИДИНАТРОННОЕ ПОКРЫТИЕ НА ОСНОВЕ ПОЛИМЕРНОЙ МАТРИЦЫ С ВКЛЮЧЕНИЕМ УГЛЕРОДНЫХ НАНОТРУБОК И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2020 |
|
RU2745976C1 |
Изобретение относится к области полимерных нанокомпозитов. Способ изготовления полимерного композита с ориентированным массивом углеродных нанотрубок, состоящего из полимерной матрицы, армированной ориентированным массивом углеродных нанотрубок, включает растворение полимера в растворителе, формирование на подложке слоя нанокомпозита центрифугированием из раствора полимера и его термообработку термическим методом при температуре, не выше температуры деструкции полимерной матрицы. В качестве наполнителя используют вертикально ориентированный массив углеродных нанотрубок, выращенный на подложке. При формировании на подложке слоя нанокомпозита центрифугированием подложку располагают перпендикулярно плоскости вращения центрифуги. Изобретение позволяет получить полимерный композит с ориентированным массивом углеродных нанотрубок с улучшенными характеристиками и упростить технологический процесс его изготовления.
Способ изготовления полимерного композита с ориентированным массивом углеродных нанотрубок, состоящего из полимерной матрицы, армированной ориентированным массивом углеродных нанотрубок, включающий растворение полимера в растворителе, формирование на подложке слоя нанокомпозита центрифугированием из раствора полимера и его термообработку термическим методом при температуре не выше температуры деструкции полимерной матрицы, отличающийся тем, что в качестве наполнителя используют вертикально ориентированный массив углеродных нанотрубок, выращенный на подложке, и при формировании на подложке слоя нанокомпозита центрифугированием подложку располагают перпендикулярно плоскости вращения центрифуги.
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок | 1923 |
|
SU2008A1 |
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок | 1923 |
|
SU2008A1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОВОГО СЕНСОРА | 2006 |
|
RU2336548C2 |
СПОСОБ ВЫСОКОПРОИЗВОДИТЕЛЬНОГО НАНЕСЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК И ПЛЕНОК КОМПОЗИТА | 2006 |
|
RU2342316C2 |
Авторы
Даты
2011-05-10—Публикация
2009-08-24—Подача