СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКОЙ КОМПОЗИЦИИ Российский патент 2011 года по МПК C08J5/16 C08L27/18 B29B11/12 B29B11/16 B29C71/00 

Описание патента на изобретение RU2421480C2

Изобретение относится к области полимерного материаловедения, а именно к способу получения композиционных полимерных материалов на основе политетрафторэтилена (ПТФЭ), отличающихся повышенной износостойкостью и нагрузочной способностью, и может быть использовано для получения полимерных материалов и изделий с высокими конструкционными и антифрикционными свойствами, способных длительно работать в режиме самосмазывания в узлах трения в качестве подшипников скольжения и подвижных уплотнений.

Известен способ изготовления антифрикционной композиции (1. Корнопольцев Н.В., Варламова Н.А., Зябликов B.C., Борзенков Г.Н., Казанцев В.М., Шевчук В.Л. Способ изготовления заготовок из наполненного фторопласта-4. Заявка №2664286 от 18.09.1978 г.), на основе фторопласта-4 с наполнителями (бронза, свинец, кокс и дисульфид молибдена), который состоит из операций: подготовка компонентов, приготовление пресс-массы, прессование заготовок и термическая обработка (спекание и охлаждение заготовок). Фторопласт-4 размалывают до 0,5-1,0 мм, кокс - до 20 мкм. Размолотый кокс смешивают с окисью свинца для получения однородной смеси и восстанавливают в среде диссоциированного аммиака при температуре 350±10°С в течение 3 ч, т.е. свинец получается при восстановлении в среде диссоциированного аммиака из окиси свинца. Порошок бронзы восстанавливают в среде диссоциированного аммиака при температуре 300±10°С в течение 3 ч для снятия с поверхности частиц окисной пленки. Перед приготовлением восстановленные компоненты перемешивают с дисульфидом молибдена. Затем смесь компонентов засыпают в смеситель и перемешивают с измельченным фторопластом-4 в течение 5-6 минут, после чего прессуют заготовки под давлением 400±50 кгс/см2, время выдержки под давлением 40-60 с. Спекание производят при температуре 350°С, далее охлаждают до температуры 327°С.

Известен способ изготовления антифрикционных материалов с эффектом самосмазывания из композиции, которая содержит углеродный коксовый порошок с преимущественным размером частиц 0,02-0,2 мм, порошок меди, однозамещенный фосфорно-кислый калий и политетрафторэтилен. Смесь перемешивают, из полученной пресс-массы опрессовывают заготовки при давлении 700 кгс/см2 ± 50 кгс/см2, выдерживают при этом давлении не менее 1 минуты, дробят и размалывают их до получения частиц размером преимущественно 0,1-0,3 мм, перемешивают полученную массу и добавляют в нее дисульфид в количестве 6-12%, вторично прессуют полученную смесь при давлении 600 кгс/см2 ± 50 кгс/см2, выдерживают при этом давлении 3 минуты, спекают и термообрабатывают (2. Гнедин Ю.Ф., Фиалков А.С., Шульгин М.М., Малютин Г.В. Способ изготовления антифрикционных материалов. Патент РФ №2064944 от 06.08.1933 г.).

Известен способ изготовления антифрикционного материала на основе политетрафторэтилена и углеродного волокнистого наполнителя, где в качестве наполнителя используются дискретные частицы, полученные путем смешивания порошкообразного политетрафторэтилена и 5-50% измельченного углеродного волокна при числе оборотов рабочих органов, равном 5000-22500 об/мин, спекания смеси при 360-390°С, измельчения спекшейся массы при 5000-22500 об/мин и классификации по размерам 50-300 мкм, в количестве 5-95 мас.%, которые смешивают с политетрафторэтиленом при 5000-225000 об/мин (3. Будник А.Ф., Сиренко Г.А., Колесников С.И. Способ «Бусико» изготовления антифрикционного материала. Авторское свидетельство SU №1723084).

К недостаткам этих вышеперечисленных способов следует отнести сложность технологического процесса, довольно высокий коэффициент трения (до 0,3-0,35) и использование в технологическом процессе большого количества компонентов.

Наиболее близким по сущности к заявляемому изобретению является способ получения антифрикционной композиции на основе политетрафторэтилена и ультрадисперсного неорганического наполнителя, при котором ультрадисперсный неорганический наполнитель, выбранный из ряда: оксид хрома, оксид циркония, цеолит, помещают в рабочие барабаны планетарной мельницы и подвергают активации в планетарной мельнице АГО-2 с частотой вращения водила - 730 об/мин и частотой вращения барабанов - 1780 об/мин за счет центробежных сил в течение 1-3 мин. Затем активированный наполнитель смешивают с политетрафторэтиленом в лопастном смесителе в течение 1-2 мин при скорости 2000 об/мин. Изделия изготавливают по стандартной технологии переработки ПТФЭ: холодное прессование при удельном давлении 50 МПа и свободное спекание при температуре 370±5°С. Скорость нагрева, продолжительность выдержки при максимальной температуре и скорость охлаждения определяли, исходя из размеров изделия (4. Охлопкова А.А., Виноградов А.В., Попов С.Н., Митронова Ю.Н., Брощева П.Н. Способ получения антифрикционной композиции. Патент РФ №2178801 от 15.10.1997 г.).

К недостаткам этого способа следует отнести небольшое (до 1,5-3 раз) повышение износостойкости данной композиции по сравнению с выбранными аналогами и по сравнению с исходным полимером (до 37,5 раз).

Задачей изобретения является существенное повышение износостойкости политетрафторэтилена (до 720 раз) и композиционных материалов на его основе с использованием активированных цеолитов (до 1000 раз) за счет изменения давления прессования заготовок и использования моторного масла марки М-8В.

Существенные признаки, характеризующие изобретение

Ограничительные: использование ультрадисперсного неорганического наполнителя - цеолита.

Отличительные: значительное улучшение антифрикционных свойств политетрафторэтилена и композиций на его основе с использованием активированного цеолита при изменении стандартных параметров технологического процесса изготовления изделий с использованием жидкого моторного масла марки М-8В.

Указанный технический результат достигается тем, что в заявляемом способе изготовления с целью получения пористых заготовок со значительно улучшенными антифрикционными свойствами прессование заготовок из порошка политетрафторэтилена и композиционной порошковой смеси на его основе с цеолитами осуществляют при давлении 12,5 МПа и 25 МПа. Отпрессованные таким образом пористые заготовки пропитывают жидким моторным маслом марки М-8В в течение 24 часов при комнатной температуре и температуре 150°С, затем подвергают их «свободному спеканию» в программируемой муфельной печи при 375°С со скоростью нагрева 2°С/мин до 300°С и 3°С/мин до 375°С (время выдержки 0,3 ч на 10-3 м толщины образца). После выдержки печь отключается и изделие остывает вместе с печью. Термин «свободное спекание» означает, что прессованные изделия вынимаются из пресс-форм и затем направляются на термообработку в муфельную печь. Таким образом, изделия спекаются в свободном состоянии без приложения давления.

Преимуществом технологии получения пористых заготовок из ПТФЭ и композитов на его основе является то, что для ее реализации не требуется использования фреонов и других компонентов, которые при взаимодействии между собой выделяют газообразные (вредные для человека) вещества, и также специального технологического оборудования.

ПТФЭ (фторопласт - 4) - промышленный продукт (ГОСТ 10007-80), представляющий собой белый рыхлый порошок со степенью кристалличности до спекания 95-98%, после спекания 50-70% плотностью 2,17-2,19 г/см3, температурой плавления 327°С.

Цеолиты представляют собой алюмосиликаты общей формулы Me2/nO×Al2O3×xSiO2×yH2O, где Me - щелочной или щелочноземельный металл, n - степень его окисления. Цеолиты относятся к сорбентам с микропористой структурой, обладают высокой адсорбционной активностью и молекулярно-ситовыми свойствами (5. Челищев Н.Ф., Берштейн Б.Г., Володин В.Ф. Цеолиты - новый тип минерального сырья. - М.: Недра, 1987. - 157 с.).

Моторное масло М-8В (ГОСТ 10541-78) - смесь дистиллятного и остаточного компонентов или дистиллятного компонента узкого фракционного состава с эффективной композицией присадок.

Отработку давления прессования заготовок производили на 4-х образцах из ПТФЭ, прессованных при давлениях 12,5; 25,0; 37,5; 50 МПа и пропитанных в моторном масле марки М-8В в течение 24 часов при комнатной температуре и температуре 150°С. Зависимость скорости массового изнашивания и коэффициента трения маслонаполненных композитов на основе ПТФЭ приведены в табл.1.

Таблица 1 Зависимость триботехнических характеристик политетрафторэтилена от содержания моторного масла М-8В, давления прессования и удельной нагрузки трения Материал P, МПа С, % f I, мг/ч Удельная нагрузка трения, МПа Удельная нагрузка трения, МПа 0,5 1,0 2,0 0,5 1,0 2,0 1 ПТФЭ 12,5 2,9 0,020 0,021 0,025 0,75 1,23 1,62 2 ПТФЭ 25,0 0,28 0,021 0,025 0,026 0,78 76,23 290,80 3 ПТФЭ 37,50 0,043 0,022 0,030 0,031 46,64 129,28 460,95 4 ПТФЭ (стандартное) 50,00 - 0,041 0,043 0,043 91,37 106,45 312,30 Примечание: Р - давление прессования; f - коэффициент трения; I - скорость массового изнашивания; С - количество впитанного масла.

Триботехнические характеристики композитов (коэффициент трения и скорость массового изнашивания) определяли при испытаниях по общепринятым методикам (ГОСТ 11629-75). Скорость изнашивания и коэффициент трения полимерных композитов определяют на машине трения СМЦ-2 (схема трения «вал-втулка» при контактном давлении 0,5-2 МПа, скорость скольжения 0,39 м/с, контртело - стальной вал из стали 45 с твердостью 45-50 HRC и шероховатостью Ra=0,06-0,07 мкм).

Пористость отпрессованных заготовок определяют по значениям плотности компонентов (ГОСТ 12730.1). Пористые материалы получают путем изменения удельного давления прессования композита от 12,5 до 50 МПа.

Необходимое давление прессования заготовок из порошка ПТФЭ определяется из условия достижения максимальной износостойкости пропитанного в дальнейшем в моторном масле композита.

Установлено, что прессование заготовок из маслонаполненного ПТФЭ при давлении 12,5 МПа и 25,0 МПа приводит к снижению скорости массового изнашивания в зависимости от нагрузки при трении в 85-190 раз и коэффициента трения до 2-х раз по сравнению с чистым ПТФЭ. Снижение коэффициента трения свидетельствует о том, что пара трения работает в режиме самосмазывания (табл.1).

С целью снижения вязкости моторного масла, и, соответственно, повышения количества впитанного масла, повышена температура пропитки до 150°С отпрессованных заготовок под давлением 12,5 МПа и 25 МПа. Максимальная температура пропитки заготовок моторным маслом выбрана исходя из того, что температура вспышки моторного масла М-8 В соответствует 200°С. Зависимость скорости массового изнашивания и коэффициента трения маслонаполненных композитов на основе ПТФЭ от температуры пропитки заготовок приведены в табл.2.

Таблица 2 Зависимость триботехнических характеристик маслонаполненного политетрафторэтилена от температуры пропитки и режима трения Материал Р, МПа С, % T, °C f I, мг/ч Удельная нагрузка трения, МПа Удельная нагрузка трения, МПа 1,0 2,0 1,0 2,0 1 ПТФЭ 12,5 2,9 коми 0,021 0,025 1,23 1,62 2 ПТФЭ 12,5 5,2 150 0,021 0,024 0,42 0,43 5 ПТФЭ 25,0 0,28 коми 0,025 0,026 76,23 290,80 8 ПТФЭ 25,0 2,17 150 0,023 0,025 0,57 0,90 Примечание: Т- температура пропитки моторным маслом.

Необходимая температура пропитки заготовок из политетрафторэтилена также определяется из условия достижения максимальной износостойкости маслонаполненного материала. Установлено, что количество впитанной смазки полимерным образцом при температуре 150°С в 2-7 раз больше, чем при комнатной температуре. Износостойкость маслонаполненного ПТФЭ возросла до 320 раз, по сравнению с полимером, полученным пропиткой образца при комнатной температуре, и до 725 раз по сравнению с исходным немаслонаполненным политетрафторэтиленом.

Оценку эффективности предлагаемого способа проводили также на композиции из политетрафторэтилена и активированного в течение 2-х мин природного цеолита. В этом случае активированные природные цеолиты использованы в качестве поглотителей жидкой смазки, так как цеолиты характеризуются высокой адсорбционной способностью.

Заготовки из композиции ПТФЭ + цеолиты изготавливали по следующей технологии: композицию из порошков ПТФЭ и активированного цеолита смешивают в лопастном смесителе в течение 2 мин при скорости 2000 об/мин с последующей сушкой в вакуумном шкафу (2 ч при 393-413 К), заготовки прессуют под давлением 12,5 и 25 МПа, затем отпрессованные заготовки пропитывают моторным маслом марки М-8В в течение 24 часов при комнатной температуре и температуре 150°С, спекают в программируемой муфельной печи при температуре 375±5°С. Количество впитанного масла оценивают по разнице масс образцов до и после спекания.

Отработку заявляемого способа производили на 4-х различных по составу композициях. Необходимое количество активированного природного цеолита определяют также из условия достижения максимальной износостойкости маслонаполненного композита. Зависимость триботехнических характеристик маслонаполненных композитов от содержания природных цеолитов приведена в табл.3.

Таблица 3 Зависимость триботехнических характеристик маслонаполненных композитов от содержания природных цеолитов и удельной нагрузки трения Маслонаполненный композит С, % f I, мг/ч Удельная нагрузка трения, МПа Удельная нагрузка трения, МПа 1 МПа 2 МПа 1 МПа 2 МПа ПТФЭ + 1 мас.% цеолита 1,65 0,040 0,039 4,8 7,80 ПТФЭ + 2 мас.% цеолита 2,32 0,042 0,034 1,9 2,56 ПТФЭ + 5 мас.% цеолита 3,35 0,041 0,035 од 2,00 ПТФЭ + 10 мас.% цеолита 4,82 0,053 0,035 1,5 4,56

Наименьшая скорость массового изнашивания, соответственно, максимальная износостойкость достигнуты при добавлении в политетрафторэтилен 5 мас.% активированного природного цеолита. Скорость массового изнашивания пропитанного моторным маслом композита на основе ПТФЭ и 5 мас.% активированного цеолита снижается до 1000 раз по сравнению с политетрафторэтиленом, полученным по стандартной технологии. При увеличении концентрации цеолитов до 10 мас.% в полимерном композиционном материале зарегистрировано повышение скорости массового изнашивания маслонаполненного композита. Это связано с тем, что частицы природных цеолитов выступают не только в качестве поглотителей жидкой смазки, но и структурно-активного агента. Структурными исследованиями показано, что при добавлении цеолита в количестве 5 мас.% в политетрафторэтилен происходит формирование более упорядоченной структуры полимерного композиционного материала, что приводит к повышению сопротивления материала к износу и, соответственно, износостойкости. Повышение концентрации цеолита в полимерном композите до 10 мас.% приводит к формированию рыхлой структуры композита с дефектными областями, что связано с образованием агломератов из частиц цеолитов.

Композиция ПТФЭ + 5 мас.% активированного цеолита также пропитывалась моторным маслом марки М-8В в течение 24 часов при температуре 150°С, затем подвергалась «свободному спеканию» при температуре 375±5°С в программируемой муфельной печи.

Зависимость триботехнических характеристик композитов ПТФЭ + 5 мас.% активированного цеолита от температуры пропитки приведена в табл.4.

Таблица 4 Зависимость триботехнических характеристик композитов ПТФЭ+5 мас.% активированного цеолита от температуры пропитки и удельной нагрузки трения Композит Р, МПа Т, °С f I, мг/ч Удельная нагрузка трения, МПа Удельная нагрузка трения, МПа 1 МПа 2 МПа 1 МПа 2 МПа Маслонаполненный композит ПТФЭ + 5 мас.% цеолита 12,5 комн. 0,043 0,042 1,5 3,08 Маслонаполненный композит ПТФЭ + 5 мас.% цеолита 12,5 150 0,040 0,034 0,16 0,45 Маслонаполненный композит ПТФЭ + 5 мас.% цеолита 25 комн. 0,042 0,039 0,10 2,0 Маслонаполненный композит ПТФЭ + 5 мас.% цеолита 25 150 0,039 0,036 0,11 0,31

Установлено, что для получения износостойкой композиции на основе ПТФЭ и активированного в течение 2 мин цеолита заготовку следует изготовить под удельным давлением 25 МПа в отличие от заготовки на основе только ПТФЭ. Это связано с тем, что введение твердых частиц в полимерную матрицу создает на границе раздела фаз полимер-наполнитель дополнительные перенапряжения (дефектные зоны), которые снижают прочность композита. В связи с этим, при удельном давлении прессования заготовки 12,5 МПа не удается достичь достаточно плотной упаковки частиц полимерной матрицы и наполнителя, что приводит к снижению прочности и, соответственно, износостойкости композита.

Установлено, что пропитка заготовки из композиционной смеси ПТФЭ + 5 мас.% при 150°С приводит к снижению массового изнашивания в 6 раз полимерных композитов, полученных пропиткой при высокой температуре при повышении нагрузки от 1 до 2 МПа, хотя износостойкость композитов при удельной нагрузке трения 1 МПа не зависит от температуры пропитки.

Значительное повышение износостойкости ПТФЭ и композиционного материала на его основе с активированными природными цеолитами с использованием моторного масла М-8В позволяет существенно увеличить ресурс работы и надежность узлов трения и машин в целом.

Пример получения износостойкого материала из политетрафторэтилена и композиции на его основе с использованием активированного цеолита: цеолит помещают в рабочие барабаны планетарной мельницы и подвергают активации за счет центробежных сил в течение 2 мин. Затем 5 г активированного цеолита смешивают с 95,0 г политетрафторэтилена в лопастном смесителе в течение 1-3 мин при скорости 2000 об/мин с последующей сушкой в вакуумном шкафу (2 ч при 393-413 К), далее заготовку прессуют под давлением 25,0 МПа, затем отпрессованную заготовку пропитывают моторным маслом марки М-8В в течение 24 часов при температуре 150°С и подвергают ее «свободному спеканию» в программируемой муфельной печи.

Техническо-экономическая эффективность

Использование заявляемого изобретения позволяет получать полимерные материалы из политетрафторэтилена и композиции на его основе с использованием активированного цеолита и моторного масла марки М-8В, обладающие эффектом самосмазывания и имеющие износостойкость в 720-1000 раз выше, чем у исходного политетрафторэтилена, что позволяет их использовать при изготовлении деталей металлополимерных узлов трения машин различных видов техники.

Похожие патенты RU2421480C2

название год авторы номер документа
БАЗАЛЬТОФТОРОПЛАСТОВЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ТРИБОТЕХНИЧЕСКОГО НАЗНАЧЕНИЯ 2013
  • Петрова Павлина Николаевна
  • Васильев Спиридон Васильевич
  • Охлопкова Айталина Алексеевна
  • Морова Лилия Ягьяевна
RU2552744C2
ПОЛИМЕРНЫЙ МАТЕРИАЛ ТРИБОТЕХНИЧЕСКОГО НАЗНАЧЕНИЯ 2010
  • Охлопкова Айталина Алексеевна
  • Слепцова Сардана Афанасьевна
  • Стручкова Татьяна Семеновна
RU2454439C1
Полимерный материал триботехнического назначения на основе политетрафторэтилена, механоактивированных каолина и шпинеля магния 2019
  • Лаукканен Эса Антти Самуэль
  • Тарасова Прасковья Николаевна
  • Слепцова Сардана Афанасьевна
  • Лазарева Надежда Николаевна
  • Охлопкова Айталина Алексеевна
  • Дьяконов Афанасий Алексеевич
RU2699109C1
Полимерный композиционный материал конструкционного и триботехнического назначения на основе политетрафторэтилена и модифицированного диоксида кремния 2022
  • Гладкина Наталия Павловна
  • Слепцова Сардана Афанасьевна
  • Федосеева Валентина Ивановна
  • Уварова Кюннэй Анатольевна
  • Охлопкова Айталина Алексеевна
  • Лазарева Надежда Николаевна
RU2792599C1
ПОЛИМЕРНЫЙ МАТЕРИАЛ ТРИБОТЕХНИЧЕСКОГО НАЗНАЧЕНИЯ НА ОСНОВЕ ПОЛИТЕТРАФТОРЭТИЛЕНА 2018
  • Петрова Павлина Николаевна
  • Маркова Марфа Алексеевна
  • Аргунова Анастасия Гаврилиевна
  • Охлопкова Айталина Алексеевна
RU2675520C1
КОМПОЗИЦИОННЫЙ ТЕРМОСТОЙКИЙ ТРИБОТЕХНИЧЕСКИЙ МАТЕРИАЛ 2004
  • Струк Василий Александрович
  • Кравченко Виктор Иванович
  • Костюкович Геннадий Александрович
  • Авдейчик Сергей Валентинович
RU2268273C1
КОМПОЗИЦИОННЫЙ ПОЛИМЕРНЫЙ МАТЕРИАЛ ТРИБОТЕХНИЧЕСКОГО НАЗНАЧЕНИЯ 2006
  • Охлопкова Айталина Алексеевна
  • Слепцова Сардана Афанасьевна
  • Петрова Павлина Николаевна
  • Ючюгяева Татьяна Семеновна
  • Сыромятникова Айталина Степановна
  • Бельков Игорь Алексеевич
  • Шаринов Николай Иванович
RU2319713C1
Полимерный материал триботехнического назначения 2017
  • Охлопкова Айталина Алексеевна
  • Слепцова Сардана Афанасьевна
  • Стручкова Татьяна Семеновна
  • Васильев Андрей Петрович
  • Лазарева Надежда Николаевна
  • Капитонова Юлия Валерьевна
  • Колесова Елена Семеновна
  • Алексеев Алексей Гаврильевич
  • Хайбо Ванг
  • Лианкай Ванг
  • Ян Цзяо
RU2664129C1
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ТРИБОТЕХНИЧЕСКОГО НАЗНАЧЕНИЯ 2000
  • Охлопкова А.А.
  • Брощева П.Н.
  • Шиц Е.Ю.
  • Попов С.Н.
  • Ючюгаева Т.С.
RU2177963C1
АНТИФРИКЦИОННАЯ НАПОЛНЕННАЯ КОМПОЗИЦИЯ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2008
  • Анисимов Андрей Валентинович
  • Бахарева Виктория Ефимовна
  • Лобынцева Ирина Владимировна
  • Савелов Александр Сергеевич
  • Пеклер Константин Владимирович
  • Демьянов Владимир Александрович
  • Ильин Сергей Яковлевич
  • Моркин Олег Васильевич
  • Цыганков Светослав Андреевич
RU2394850C1

Реферат патента 2011 года СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКОЙ КОМПОЗИЦИИ

Изобретение относится к способу получения композиционных полимерных износостойких материалов на основе политетрафторэтилена и может быть использовано при изготовлении деталей металлополимерных узлов трения машин различных видов техники. Технический результат достигается путем холодного прессования под удельным давлением 12,5 МПа с последующей пропиткой в моторном масле М-8В при температуре 150°С в течение 24 часов и их спекание при температуре 370±5°С. Способ позволяет существенно повысить износостойкость и нагрузочную способность изделий, изготовленных по предложенной технологии. При этом представляется возможным создать большую группу дешевых недефицитных материалов с высокими конструкционными и антифрикционными свойствами, способных длительно работать в режиме самосмазывания в узлах трения в качестве подшипников скольжения и подвижных уплотнений, в том числе в криогенной технике. 2 н.п. ф-лы, 4 табл.

Формула изобретения RU 2 421 480 C2

1. Способ повышения износостойкости изделий из политетрафторэтилена, включающий изготовление изделий путем холодного прессования под удельным давлением 12,5 МПа с последующей пропиткой в моторном масле М-8 В при температуре 150°С в течение 24 ч и их спекание при температуре 370±5°С.

2. Способ повышения износостойкости изделий из политетрафторэтилена, включающий сухое смешение политетрафторэтилена с 5 мас.% цеолитом, активированным в течение 2 мин, изготовление изделий из полученной смеси путем холодного прессования под удельным давлением 25,0 МПа с последующей пропиткой в моторном масле М-8 В при температуре 150°С в течение 24 ч и их спекание при температуре 370±5°С.

Документы, цитированные в отчете о поиске Патент 2011 года RU2421480C2

Способ изготовления заготовок изНАпОлНЕННОгО фТОРОплАСТА-4 1978
  • Корнопольцев Николай Васильевич
  • Варламова Надежда Анатольевна
  • Зябликов Владимир Сергеевич
  • Борзенков Геннадий Николаевич
  • Казанцев Валерий Михайлович
  • Шевчук Василий Логвинович
SU794033A1
"Способ "Бусико" изготовления антифрикционного материала" 1990
  • Будник Анатолий Федорович
  • Сиренко Геннадий Александрович
  • Колесников Сергей Иванович
SU1723084A1
СПОСОБ ИЗГОТОВЛЕНИЯ АНТИФРИКЦИОННЫХ МАТЕРИАЛОВ 1993
  • Гнедин Ю.Ф.
  • Фиалков А.С.
  • Шульгин М.М.
  • Малютин Г.В.
RU2064944C1
СПЕЧЕННЫЙ АНТИФРИКЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ МЕДИ 1992
  • Зозуля В.Д.
  • Манерцев В.А.
RU2031173C1
СПОСОБ ПОЛУЧЕНИЯ АНТИФРИКЦИОННОЙ КОМПОЗИЦИИ 1997
  • Охлопкова А.А.
  • Виноградов А.В.
  • Попов С.Н.
  • Митронова Ю.Н.
  • Брощева П.Н.
RU2178801C2
Антифрикционная смазка для абразивной обработки 1981
  • Кигель Исаак Гершович
  • Шарков Василий Александрович
  • Кульман Александр Михайлович
  • Чумный Юрий Иванович
  • Аранович Анатолий Оскарович
  • Бочко Анатолий Васильевич
  • Карюк Геннадий Гаврилович
  • Мошковский Евгений Иванович
SU1016356A1
Энциклопедия полимеров, т.2
- М.: Советская энциклопедия, 1974, с.351.

RU 2 421 480 C2

Авторы

Охлопкова Айталина Алексеевна

Петрова Павлина Николаевна

Федоров Андрей Леонидович

Морова Лилия Ягьяевна

Никифоров Леонид Александрович

Даты

2011-06-20Публикация

2009-08-27Подача