СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ МЕТАЛЛОВ И СПЛАВОВ ВОССТАНОВЛЕНИЕМ ИЗ КАТОДНОГО МАТЕРИАЛА Российский патент 2011 года по МПК C25C5/04 B22F9/18 

Описание патента на изобретение RU2423556C2

Изобретение относится к области электрохимического получения порошков металлов из расплавленных солей и может быть использовано в химической, электрохимической промышленности, энергетике.

Известен способ получения мелкодисперсных металлических порошков электролизом в среде расплавленных галогенидов осаждаемого и щелочного металлов, в котором процесс осаждения металла осуществляется при одновременной кристаллизации на катоде галогенида щелочного металла (А.С. СССР №285248, МПК C22D 3/00, C22D 5/00, B22F 9/00, опубл. 29.10.1970 г.).

Недостатком известного способа является то, что растворимость галогенидов осаждаемого металла в расплаве щелочного металла ограничена (от нескольких десятков до нескольких единиц процентов). Поэтому для получения даже небольших количеств порошка осаждаемого металла требуется большой объем электролита, что отрицательно сказывается на производительности процесса. Помимо этого, в процессе осаждения металла из электролита затруднен контроль формирования осадков требуемой крупности.

Наиболее близким по технической сущности к заявляемому способу является способ получения металлического порошка серебра из катодного материала, включающий использование в качестве твердофазного катодного материала хлористого серебра, размещение катодного материала между двумя посеребренными латунными или медными сетками, использование в качестве анода графита или угля, соединение твердофазного катода с сетками и анода с ионопроводящей средой из раствора серной или соляной кислоты и восстановление в токовом интервале 150-50 А/дм2 (А.С. СССР №129447, МПК С25С 5/00, С25С 1/20, опубл. 01.01.1960 г.).

Известный способ узкого применения предназначен для получения только порошка серебра. Кроме того, катод представляет собой рыхлую среду, поэтому данным способом невозможно получить конечный продукт в виде изделия заданной формы. В качестве ионопроводящей среды в данном способе используют водный раствор соляной или серной кислоты. Однако, как известно, водные растворы характеризуются низкой проводимостью, поэтому производительность электролиза в водном растворе невысокая.

Задача, решаемая заявляемым способом, заключается в расширении номенклатуры получаемых металлических порошков с высокой производительностью и возможности получения конечного продукта в виде изделия заданной формы.

Поставленная задача решается следующим образом.

В способе получения порошков металлов восстановлением из катодного материала, включающем заключение твердофазного катодного материала в металлическую сетку, соединение их и анода с ионопроводящей средой и катодное восстановление, в качестве катодного материала используют твердофазные галогенидные соли металлов II, IV, V, VI и VIII групп таблицы Менделеева, перед заключением в сетку катодный материал формируют в виде изделия заданной формы, а в качестве анода используют литий или его сплавы.

При этом в качестве катодного материала используют смеси галогенидных солей металлов II, IV, V, VI и VIII групп таблицы Менделеева.

Причем в качестве катодного материала используют смеси оксидов и галогенидных солей металлов II, IV, V, VI и VIII групп таблицы Менделеева.

Помимо этого, в качестве ионопроводящей среды используют расплав галогенидов щелочных металлов.

Кроме этого в качестве ионопроводящей среды используют расплав галогенидных щелочных металлов, загущенный оксидами переходных металлов.

Помимо всего, восстановление проводят в токовом интервале до 1000 А/дм2.

Использование твердофазного катодного материала из галогенидных солей, или из смеси галогенидных солей, или из смеси оксидов и галогенидных солей металлов II, IV, V, VI и VIII групп таблицы Менделеева при использовании в качестве ионопроводящей среды, характеризующейся высокой проводимостью, расплава галогенидов щелочных металлов или расплава галогенидных щелочных металлов, загущенного оксидами переходных металлов, позволяет получать металлические осадки широкой номенклатуры как в виде порошка, так и в виде пористых изделий заданной формы с высокой производительностью. Загуститель используется для иммобилизации жидкой фазы ионопроводящей среды. Использование загустителя позволяет получать конечные изделия сложной конфигурации более однородные по размеру частиц. Использование лития или его сплавов в качестве анода, характеризующихся высокой активностью, позволяет осуществлять восстановительный процесс указанных солей металлов при высокой токовой нагрузке, повышая производительность.

Величина токового интервала установлена опытным путем и является оптимальной для осуществления заявляемого способа. В зависимости от того, что нужно получить, восстановительный процесс осуществляют при высокой токовой нагрузке, получая более плотные пористые изделия, а при меньших токовых нагрузках получают порошок металлов. При нагрузке выше 1000 А/дм2 образуются сплошные осадки.

Процесс восстановления ведут при температурах выше температуры плавления ионопроводящей среды.

При протекании процесса восстановления генерируется постоянный ток, который может быть использован в других сопутствующих производствах, таких, например, как гальваническое производство, зарядка вторичных источников тока и др.

Наличие отличительных от прототипа существенных признаков позволяет признать заявляемый способ новым.

Из уровня техники не выявлены технические решения, имеющие признаки, совпадающие с отличительными признаками заявляемого объекта, поэтому он соответствует критерию "изобретательский уровнень".

Возможность осуществления заявляемого способа в промышленности позволяет считать его соответствующим критерию "промышленная применимость".

Способ осуществляют следующим образом.

Пример 1. Катод, анод и электролит (ионопроводящая среда) изготовляют в виде дисков диаметром 10 см. В качестве катодного материала берут хлорид никеля, спрессовывают в диск высотой 1 см и заключают в никелевую сетку. В качестве анодного материала берут металлический литий, помещенный в высокопористый ячеистый материал из железа. В качестве электролита используют смесь галогенидов лития Li (Br, F, Cl) с температурой плавления 430°С, загущенную алюминатом лития. Электролит размещают между катодом и анодом, полученную сборку помещают в печь с защитной инертной атмосферой и проводят катодное восстановление при температуре 550°С и плотности тока 600 А/дм2. Полученный продукт: диск из пористого металлического никеля диаметром 9,60 см и высотой 0,90 см, размер частиц 4-6 мк.

Пример 2. Катод, анод и электролит изготовляют в виде брусков квадратного сечения с ребром 15 см. В качестве катодного материала берут хлорид никеля, спрессовывают в брусок высотой 2 см и заключают в никелевую сетку. В качестве анодного материала берут металлический литий, который помещают в высокопористый ячеистый материал из железа. В качестве электролита берут смесь галогенидов лития Li (Br, F, Cl) с температурой плавления 430°С, загущенную алюминатом лития. Электролит размещают между катодом и анодом, полученную сборку помещают в печь с защитной инертной атмосферой и проводят катодное восстановление при температуре 550°С и плотности тока 300 А/дм2. Полученный продукт: брусок квадратного сечения из пористого металлического никеля с ребром 14,50 см и высотой 1,60 см, размер частиц 10-15 мк.

Пример 3. Катод, анод и электролит изготавливают в виде брусков шестигранного сечения с апофемой 5 см. В качестве катодного материала берут хлорид никеля, который спрессовывают в брусок высотой 5 см и заключают в никелевую сетку. В качестве анодного материала берут металлический литий, помещенный в высокопористый ячеистый материал из железа. В качестве электролита используют смесь галогенидов лития Li (Br, F, Cl) с температурой плавления 430°С, загущенную алюминатом лития. Электролит размещают между катодом и анодом, полученную сборку помещают в печь с защитной инертной атмосферой и проводят катодное восстановление при температуре 500°С и плотности тока 1000 А/дм2. Полученный продукт: брусок шестигранного сечения из пористого металлического хрома с апофемой 4,95 см и высотой 4,90 см, размер частиц 1-3 мк.

Пример 4. Катод, анод и электролит изготавливают в виде дисков диаметром 10 см. В качестве катодного материала берут смесь хлорида и оксида никеля в соотношении 70/30% вес., спрессовывают в диск высотой 1 см и заключают в никелевую сетку. В качестве анодного материала используют металлический литий, помещенный в высокопористый ячеистый материал из железа. В качестве электролита берут смесь галогенидов лития Li (Br, F, Cl) с температурой плавления 430°С, загущенную алюминатом лития. Электролит размещают между катодом и анодом, полученную сборку помещают в печь с защитной инертной атмосферой и проводят катодное восстановление при температуре 550°С и плотности тока 600 А/дм2. Полученный продукт: диск из пористого металлического никеля диаметром 9,80 см и высотой 0,95 см, размер частиц 1-4 мк.

Пример 5. Катод, анод и электролит изготавливают в виде дисков диаметром 10 см. В качестве катодного материала берут смесь хлоридов кобальта и никеля в соотношении 40/60% вес., спрессовывают в диск высотой 1 см и заключают в никелевую сетку. В качестве анодного материала берут металлический литий, помещенный в высокопористый ячеистый материал из железа. В качестве электролита используют смесь галогенидов лития Li (Br, F, Cl) с температурой плавления 430°С, загущенную алюминатом лития. Электролит размещают между катодом и анодом, полученную сборку помещают в печь с защитной инертной атмосферой и проводят катодное восстановление при температуре 500°С и плотности тока 200 А/дм2. Полученный продукт: диск из пористого металлического никель-кобальтового сплава диаметром 9,30 см и высотой 0,80 см, размер частиц 10-25 мк.

Пример 6. Катод, анод и электролит изготавливают в виде дисков диаметром 10 см. В качестве катодного материала берут смесь хлоридов хрома и никеля в соотношении 20/80% вес., спрессовывают в диск высотой 1 см и заключают в никелевую сетку. В качестве анодного материала берут металлический литий, помещенный в высокопористый ячеистый материал из железа. В качестве электролита используют смесь галогенидов лития Li (Br, F, Cl) с температурой плавления 430°С, загущенную алюминатом лития. Электролит размещают между катодом и анодом, полученную сборку помещают в печь с защитной инертной атмосферой и проводят катодное восстановление при температуре 550°С и плотности тока 600 А/дм2. Полученный продукт: диск из пористого металлического никель-хромового сплава диаметром 9,60 см и высотой 0,90 см, размер частиц 2-5 мк.

Пример 7. Катод, анод и электролит изготавливают в виде брусков шестигранного сечения с апофемой 5 см. В качестве катодного материала берут дихлорид титана, который спрессовывают в брусок высотой 2 см и заключают в никелевую сетку. В качестве анодного материала берут литий-борный композит с содержанием бора 24 вес.%, который спрессовывают в брусок высотой 1 см. В качестве электролита используют эвтектическую смесь лития и калия (LiCl-KCl) с температурой плавления 360°С, загущенную оксидом алюминия. Электролит размещают между катодом и анодом, полученную сборку помещают в печь с защитной инертной атмосферой и проводят катодное восстановление при температуре 500°С и плотности тока 300 А/дм2. Полученный продукт: брусок шестигранного сечения из пористого металлического титана с апофемой 4,95 см и высотой 1,93 см., размер частиц 5-12 мк.

Пример 8. Катод, анод и электролит изготавливают в виде дисков диаметром 10 см. В качестве катодного материала берут хлорид кальция, спрессовывают в диск высотой 1 см и заключают в никелевую сетку. В качестве анодного материала берут литий-борный композит с содержанием бора 22 вес.%, который спрессовывают в диск высотой 1 см. В качестве электролита берут эвтектическую смесь хлоридов лития и натрия (LiCl-NaCl) с температурой плавления 551°С, загущенную оксидом магния. Электролит размещают между катодом и анодом, полученную сборку помещают в печь с защитной инертной атмосферой и проводят катодное восстановление при температуре 600°С и плотности тока 500 А/дм2. Полученный продукт: диск из пористого металлического кальция диаметром 9,95 см и высотой 0,95 см, размер частиц 3-15 мк.

Пример 9. Катод, анод и электролит изготавливают в виде дисков диаметром 10 см. В качестве катодного материала берут смесь дихлорида ванадия и оксида (V) ванадия в соотношении 90/10% вес., спрессовывают в диск высотой 1 см и заключают в никелевую сетку. В качестве анодного материала используют металлический литий, помещенный в высокопористый ячеистый материал из железа. В качестве электролита берут смесь галогенидов лития Li (Br, F, Cl) с температурой плавления 430°С, загущенную алюминатом лития. Электролит размещают между катодом и анодом, полученную сборку помещают в печь с защитной инертной атмосферой и проводят катодное восстановление при температуре 500°С и плотности тока 200 А/дм2. Полученный продукт: диск из пористого металлического ванадия диаметром 9,70 см и высотой 0,90 см, размер частиц 1-4 мк.

Как показывают примеры осуществления заявляемого способа, используя различный состав и форму твердофазного катодного материала, в качестве анода - литий или его сплавы, а в качестве электролита (ионопроводящей среды) - расплав галогенидов щелочных металлов или расплав галогенидов щелочных металлов, загущенных оксидами переходных металлов, и осуществляя восстановление катода в токовом интервале, не превышающем 1000 А/дм2, можно получить изделия различной формы с различным размером частиц.

Похожие патенты RU2423556C2

название год авторы номер документа
Элемент термоактивируемого химического источника тока 2021
  • Захаров Валерий Вячеславович
  • Волкова Ольга Вячеславовна
  • Рженичев Владимир Васильевич
RU2768252C1
ТВЕРДОТЕЛЬНЫЙ ХИМИЧЕСКИЙ ИСТОЧНИК ТОКА 1997
  • Потанин А.А.
  • Веденеев Н.И.
RU2136083C1
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ЩЕЛОЧНОГО МЕТАЛЛА ИЗ ВОДНОГО РАСТВОРА 2000
  • Пюттер Херманн
  • Хубер Гюнтер
  • Ширле-Арндт Керстин
  • Шлэфер Дитер
  • Гут Йозеф
RU2253703C2
Металл-серный проточный аккумулятор 2023
  • Ахмедов Магомед Абдурахманович
  • Гафуров Малик Магомедович
  • Рабаданов Камиль Шахриевич
  • Атаев Мансур Бадавиевич
  • Ахмедова Амина Джабировна
RU2820527C2
Улучшенные электрохимические элементы для применения в высокоэнергетичном источнике тока 2018
  • Ковач Андраш
  • Ллойд Дэвид
  • Браун Дэвид Пол
RU2786089C2
ЛИТИЕВАЯ ВТОРИЧНАЯ БАТАРЕЯ С ЭЛЕКТРОЛИТОМ, СОДЕРЖАЩИМ СОЕДИНЕНИЯ АММОНИЯ 2006
  • Дзо Соо Ик
  • Йу Дзисанг
  • Чои Биунгчул
  • Хан Чангдзоо
RU2335044C1
РЕГЕНЕРАТИВНЫЙ ЭЛЕКТРОДНЫЙ БЛОК ТОПЛИВНЫХ ЭЛЕМЕНТОВ 1992
RU2067339C1
Способ переработки нитридного ОЯТ в солевых расплавах с удалением остаточного количества хлорирующего агента 2020
  • Селявский Вадим Юрьевич
  • Ушаков Дмитрий Александрович
  • Житков Александр Сергеевич
  • Овченков Сергей Геннадьевич
  • Харитонов Артем Олегович
RU2758450C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ТУГОПЛАВКОГО МЕТАЛЛА 2009
  • Костылев Виктор Алексеевич
  • Леонтьев Леопольд Игоревич
  • Лисин Вячеслав Львович
  • Петрова Софья Александровна
  • Зайков Юрий Павлович
  • Чебыкин Виталий Васильевич
  • Кудяков Владимир Яковлевич
  • Ивенко Владимир Михайлович
  • Циовкина Людмила Абрамовна
  • Филатов Евгений Сергеевич
RU2401888C1
ТОПЛИВНЫЙ ЭЛЕМЕНТ ПРЯМОГО ЭЛЕКТРОХИМИЧЕСКОГО ОКИСЛЕНИЯ (ВАРИАНТЫ) И СПОСОБ ВЫРАБОТКИ ЭЛЕКТРОЭНЕРГИИ ИЗ ТВЕРДОФАЗНОГО ОРГАНИЧЕСКОГО ТОПЛИВА (ВАРИАНТЫ) 2004
  • Чуан Стивен С. К.
RU2420833C2

Реферат патента 2011 года СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ МЕТАЛЛОВ И СПЛАВОВ ВОССТАНОВЛЕНИЕМ ИЗ КАТОДНОГО МАТЕРИАЛА

Изобретение направлено на расширение номенклатуры получаемых металлических порошков, в частности к способу получения порошков металлов и сплавов восстановлением из катодного материала. Способ включает заключение твердофазного катодного материала в металлическую сетку, соединение твердофазного катодного материала в сетке и анода с ионопроводящей средой и катодное восстановление. В качестве катодного материала используют твердофазные галогенидные соли получаемых металлов II, IV, V, VI и VIII групп таблицы Менделеева или их смеси, или смеси их галогенидных солей и их оксидов. В качестве анода используют литий или его сплавы. Перед заключением в сетку катодный материал формируют в виде изделия заданной формы. Катодное восстановление ведут при температуре выше температуры плавления ионопроводящей среды. Техническим результатом является расширение номенклатуры получаемых металлических порошков, получение их с высокой производительностью и возможность получения конечного продукта в виде изделия заданной формы. 3 з.п. ф-лы.

Формула изобретения RU 2 423 556 C2

1. Способ получения порошков металлов и сплавов восстановлением из катодного материала, включающий заключение твердофазного катодного материала в металлическую сетку, соединение твердофазного катодного материала в сетке и анода с ионопроводящей средой и катодное восстановление, характеризующийся тем, что в качестве катодного материала используют твердофазные галогенидные соли получаемых металлов II, IV, V, VI и VIII групп таблицы Менделеева или их смеси, или смеси их галогенидных солей и их оксидов, а в качестве анода используют литий или его сплавы, перед заключением в сетку катодный материал формируют в виде изделия заданной формы, катодное восстановление ведут при температуре выше температуры плавления ионопроводящей среды.

2. Способ по п.1, отличающийся тем, что в качестве ионопроводящей среды используют расплав галогенидов щелочных металлов.

3. Способ по п.1, отличающийся тем, что в качестве ионопроводящей среды используют расплав галогенидных солей щелочных металлов, загущенный оксидами переходных металлов.

4. Способ по п.1, отличающийся тем, что восстановление проводят при плотности тока не более 1000 А/дм2.

Документы, цитированные в отчете о поиске Патент 2011 года RU2423556C2

Способ электролитического получения порошка серебра из нерастворимых соединений 1959
  • Семерюк В.И.
SU129447A1
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы 1923
  • Бердников М.И.
SU12A1
СПОСОБ ПОЛУЧЕНИЯ МЕЛКОДИСПЕРСНЫХ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ ЭЛЕКТРОЛИЗОМ 0
SU285248A1
ПОЛУЧЕНИЕ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ ПУТЕМ ВОССТАНОВЛЕНИЯ НЕМЕТАЛЛИЧЕСКИХ СОЕДИНЕНИЙ-ПРЕДШЕСТВЕННИКОВ И ПЛАВЛЕНИЯ 2003
  • Вудфилд Эндрю Филип
  • Шамблен Клиффорд Эрл
  • Отт Эрик Аллен
RU2324752C2
WO 2004007808 A1, 22.01.2004
Формирователь импульсов 1980
  • Глазунов О.В.
SU997542A1
US 6712952 B1, 30.03.2004.

RU 2 423 556 C2

Авторы

Захаров Валерий Вячеславович

Волкова Ольга Вячеславовна

Ерофеев Виктор Петрович

Проскурнев Илья Сергеевич

Даты

2011-07-10Публикация

2008-08-14Подача