СПОСОБ ПОЛУЧЕНИЯ КОЛЛОИДНЫХ РАСТВОРОВ ПЛАТИНЫ Российский патент 2011 года по МПК B01J13/00 C01G55/00 B82B1/00 

Описание патента на изобретение RU2424051C2

Изобретение относится к способам получения коллоидных растворов платины, которые найдут применение в различных отраслях науки и техники, в частности при разработке новых типов высокоселективных твердотельных катализаторов.

Известен способ получения наночастиц (патент RU №22650756, опубл. 2005), включающий в себя диспергирование расплавленного материала, подачу жидких капель этого материала в плазму электрического разряда, параметры которой удовлетворяют заданным соотношениям, образованную в инертном газе при давлении 10-3-10-1 Па, охлаждение в инертном газе образовавшихся в упомянутой плазме жидких наночастиц до затвердевания и нанесение полученных наночастиц на носитель. Недостатком этого способа является сложность технического оформления, так как для реализации этого способа используется установка плазменного электродиспергирования.

Известен способ получения наночастиц платиновых металлов (патент RU №2333077, опубл. 2008), включающий в себя приготовление прямых или обратных мицелл с последующим восстановлением в них прекурсоров металлов. Перед приготовлением мицелл их концентрируют из водных растворов ионной флотацией или фотоэкстракцией с применением поверхностно-активных веществ (ПАВ) и углеводородов. Недостатком данного способа является необходимость отмывки спиртом полученных наночастиц от ПАВ.

Известен способ получения коллоидного раствора наночастиц металла (патент RU №2006145511, опубл. 2008), включающий в себя растворение иодида соответствующего металл в метаноле, с последующим воздействием на полученный раствор физическим фактором. Воздействие осуществлялось путем облучения раствора источником света с длиной волны не более чем 6 мк. После чего раствор нагревают до температуры не более чем 50°С и добавляют четыреххлористый углерод. Недостатком способа является применение таких токсичных веществ, как метанол и четыреххлористый углерод, которые приводят к агломерации частиц металла.

Известен способ получения высокодисперсных порошков металлов (патент RU №2302927, опубл. 2007). Металл нагревают до температуры кипения, испаряют и конденсируют пар, подавая струю пара металла в конденсатор, форма рабочей поверхности которого максимально приближена к форме струи истечения пара. Конденсацию и рост частиц металла осуществляют в зоне толщиной, приближенной к постоянной. Удаление осажденного порошка металла осуществляют непрерывно по всей рабочей поверхности конденсатора. Недостатком способа является необходимость нагрева металла до температуры кипения.

В качестве прототипа выбран способ получения коллоидных растворов металлов (патент RU №2238140, опубл. 2004). Получение коллоидных растворов металлов, выбранных из второй группы и/или четвертого периода, проводилось в присутствии органического соединения, содержащего гетероатом - кислород или азот, и осуществлялось путем электрохимического взаимодействия. Электрохимическое взаимодействие осуществлялось при изменении скорости процесса растворения металла в условиях циклического изменения полярности электродов каждые 10 секунд при необходимости при постоянном снижении напряжения с 1,8 до. 0,2 В. Полученный конечный продукт - коллоидный раствор металла - имеет концентрацию 0,01-4 ммоль в литре и размеры частиц от 0,1 до 90 мкм. В качестве органического соединения можно применять насыщенные, ненасыщенные, ароматические сульфокислоты или их ангидриды, многоосновные карбоновые кислоты или их ангидриды, азотосодержащий водорастворимый полимер, первичные, вторичные, третичные амины, одно- или полиатомные спирты, кетоны, в том числе фруктозу, сахарозу, глюкозу. Недостатком этого способа является невозможность получения наноразмерных частиц металлов.

Задачей заявляемого способа является получение коллоидных растворов платины, размер частиц которых варьируется в интервале от 10 до 500 нм в зависимости от параметров процесса.

Решение поставленной задачи достигается тем, что электрохимическое взаимодействие происходит при циклическом изменении полярности электродов с частотой 30-80 Гц при плотности тока 1 А/см2 в растворах гидроксидов щелочных металлов концентрацией 2-6 моль в литре при температуре 30-35°С.

При поляризации катионы щелочных металлов адсорбируются на поверхности платины, образуя интерметаллические соединения платины с щелочным металлом. Образование интерметаллического соединения и последующее его разложение водой способствуют разрыхлению платины и распылению ее в объеме электролита. Скорость данного процесса зависит от ряда факторов, одним из которых является температура. С ростом температуры скорость разрушения платины падает. При реверсе тока этот эффект имеет место в условиях как катодной, так и анодной поляризации. Кроме того, на скорость разрушения платины оказывает влияние частота переменного тока /А.И.Ионкин, В.М.Караваев, А.И.Кошелев, Ю.Д.Кудрявцев, В.Р.Сальман, Д.П.Семченко. Поляризация платины при электролизе переменным током. - В сб.: Исследования в области прикладной электрохимии. Новочеркасск, 1970 (Новочеркасский политехнический институт)/.

Техническим результатом заявляемого способа является получение коллоидного раствора платины, размер частиц которого варьируется в интервале от 10 до 500 нм.

Способ осуществляли методом электрохимического взаимодействия в условиях циклического изменения полярности платиновых электродов в растворах гидроксидов щелочных металлов. Для этого два платиновых электрода, выполненных из платиновой фольги, были помещены в раствор гидроксида щелочного металла, который подвергался электролизу переменным током.

Пример 1.

Коллоидный раствор платины получали при электролизе раствора гидроксида натрия концентрацией 2 моль в литре переменным током плотностью 1 А/см2, частотой 80 Гц. Температура раствора 30-35°С. Скорость разрушения платины составила 0,0250 г/см2·час, при этом дисперсность полученных частиц изменялась в диапазоне от 10 до 50 нм.

Пример 2.

Получение коллоидного раствора платины осуществляли путем разрушения двух платиновых электродов в растворе гидроксида калия концентрацией 2 моль в литре под действием переменного тока плотностью 1 А/см2, частотой 30 Гц. Температура раствора 30-35°С. Скорость разрушения платины составила 0,0127 г/см2·час, при этом дисперсность полученных частиц изменялась в диапазоне от 10 до 80 нм.

Пример 3.

Коллоидный раствор платины получали путем разрушения двух платиновых электродов при электролизе раствора гидроксида калия концентрацией 6 моль в литре переменным током плотностью 1 А/см2, частотой 50 Гц. Температура раствора 30-35°С. Скорость разрушения платины составила 0,0504 г/см2·час, при этом дисперсность полученных частиц изменялась в диапазоне от 50 до 500 нм.

Таким образом, заявляемый способ обеспечивает получение коллоидных растворов платины, размер частиц которых варьируется в интервале от 10 до 500 нм в зависимости от параметров процесса и которые в дальнейшем могут быть использованы для получения твердотельных катализаторов.

Похожие патенты RU2424051C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОДНЫХ МАТЕРИАЛОВ ДЛЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ И СУПЕРКОНДЕНСАТОРОВ 2018
  • Куриганова Александра Борисовна
  • Чернышева Дарья Викторовна
  • Смирнов Роман Владимирович
RU2678438C1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ КАТАЛИЗАТОРА PT-NIO/C 2012
  • Смирнова Нина Владимировна
  • Леонтьева Дарья Викторовна
  • Куриганова Александра Борисовна
RU2486958C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА С НАНОРАЗМЕРНЫМИ ЧАСТИЦАМИ ПЛАТИНЫ 2009
  • Смирнова Нина Владимировна
  • Кудрявцев Юрий Дмитриевич
  • Куриганова Александра Борисовна
  • Клушин Виктор Александрович
RU2424850C2
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ ПЛАТИНОВЫХ МЕТАЛЛОВ 2013
  • Жариков Валерий Михайлович
  • Филиппов Данил Игоревич
RU2540664C2
Способ получения катализатора с наноразмерными частицами платины 2016
  • Гутерман Владимир Ефимович
  • Новомлинский Иван Николаевич
  • Алексеенко Анастасия Анатольевна
  • Беленов Сергей Валерьевич
  • Цветкова Галина Геннадьевна
  • Балакшина Елена Николаевна
RU2616190C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА С НАНОРАЗМЕРНЫМИ ЧАСТИЦАМИ СПЛАВОВ ПЛАТИНЫ 2011
  • Смирнова Нина Владимировна
  • Леонтьева Дарья Викторовна
  • Леонтьев Игорь Николаевич
  • Куриганова Александра Борисовна
RU2455070C1
Способ получения наноструктурированных платиноуглеродных катализаторов 2017
  • Новикова Ксения Сергеевна
  • Герасимова Екатерина Владимировна
  • Добровольский Юрий Анатольевич
  • Смирнова Нина Владимировна
RU2660900C1
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАМИКРОДИСПЕРСНОГО ПОРОШКА ОКСИДА НИКЕЛЯ НА ПЕРЕМЕННОМ ТОКЕ 2011
  • Килимник Александр Борисович
  • Острожкова Елена Юрьевна
  • Бакунин Евгений Сергеевич
RU2503748C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО NiО/C МАТЕРИАЛА 2010
  • Смирнова Нина Владимировна
  • Леонтьева Дарья Викторовна
  • Куриганова Александра Борисовна
RU2449426C1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА NiO/C 2012
  • Смирнова Нина Владимировна
  • Леонтьева Дарья Викторовна
RU2501127C1

Реферат патента 2011 года СПОСОБ ПОЛУЧЕНИЯ КОЛЛОИДНЫХ РАСТВОРОВ ПЛАТИНЫ

Изобретение может быть использовано в производстве высокоселективных твердотельных катализаторов. Осуществляют электрохимическое взаимодействие платиновых электродов с раствором гидроксида щелочного металла концентрацией 2-6 моль/л при циклическом изменении полярности электродов с частотой 30-80 Гц при плотности тока 1 А/см2 и температуре 30-35°С. Изобретение позволяет получать коллоидные растворы платины с размером частиц 10-500 нм.

Формула изобретения RU 2 424 051 C2

Способ получения коллоидных растворов платины в результате электрохимического взаимодействия в условиях циклического изменения полярности электродов, отличающийся тем, что электрохимическое взаимодействие происходит при циклическом изменении полярности платиновых электродов с частотой 30-80 Гц при плотности тока 1 А/см2 в растворах гидроксидов щелочных металлов концентрацией 2-6 моль в литре при температуре 30-35°С.

Документы, цитированные в отчете о поиске Патент 2011 года RU2424051C2

СПОСОБ ПОЛУЧЕНИЯ КОЛЛОИДНЫХ РАСТВОРОВ МЕТАЛЛОВ 2001
  • Крыжановский А.В.
RU2238140C2
Способ концентрирования платиновых металлов из промышленных растворов 1984
  • Данилова Ф.И.
  • Кириллова В.П.
  • Стукалова Е.М.
  • Межиров М.С.
  • Мясоедова Г.В.
  • Саввин С.Б.
  • Родина Н.В.
  • Федорова А.Н.
  • Белова Е.В.
  • Жукова Н.Г.
  • Антокольская И.И.
  • Гришина О.Н.
SU1297584A1
US 4059541 A, 22.11.1977
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 424 051 C2

Авторы

Кудрявцев Юрий Дмитриевич

Смирнова Нина Владимировна

Куриганова Александра Борисовна

Даты

2011-07-20Публикация

2009-02-26Подача