СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО NiО/C МАТЕРИАЛА Российский патент 2012 года по МПК H01M4/52 C01G53/04 B05D5/12 B82B3/00 

Описание патента на изобретение RU2449426C1

Изобретение относится к области электрохимической энергетики, а именно к приготовлению активной массы электрода с наноразмерными частицами NiO на углеродном носителе, используемого в химических источниках тока, в частности в никель-металл-гидридных аккумуляторах, а также в суперконденсаторах.

Известен способ получения (патент США №US 2010/0055568 A1, опубл. 04.03.2010) композиционного материала (нанокомпозита), используемого в литиевых аккумуляторах и суперконденсаторах, представляющего собой оксид переходного металла на углеродном носителе. Способ получения нанокомпозита, состоящего из оксида переходного металла (например, Ni) и одномерных многостенных углеродных нанотрубок, используемых в качестве углеродного носителя, включает предварительное растворение сурфактанта в дистиллированной воде и перемешивание его с помощью ультразвуковой мешалки в течение 1 часа. В полученный раствор последовательно добавляют углеродные нанотрубки, перемешивая полученную суспензию в течение 3 часов, затем добавляют хлорид металла в качестве прекурсора (например NiCl2) и мочевину и размешивают еще 20 минут. При постоянном перемешивании повышают температуру до 100°С и поддерживают ее в течение 7 часов. Полученную суспензию высушивают в вакууме при температуре 100°С, после чего проводят термическую обработку при температуре 300°С.

Недостатком данного способа является длительность технологического процесса и большие энергозатраты, связанные с необходимостью использования вакуума и многократной продолжительной термообработки в интервале температур 100-300°С.

Известен способ получения нанокомпозиционного материала (Ji Yeong Lee, Kui Liang, Kay Hyeok An, Young Нее Lee. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance // Synthetic Metals, 2005, V.150, Р.153-157), состоящего из оксида никеля и углеродных многостенных нанотрубок в качестве углеродного носителя, используемый в суперконденсаторах. Способ включает предварительное нагревание нанотрубок в 68% (по массе) растворе HNO3 в течение 20 часов для их эффективного диспергирования, промывку и фильтрование. Далее нанотрубки перемешивают в ультразвуковой мешалке в течение 3 часов в дистиллированной воде. В суспензию нанотрубок добавляют тетрагидроксид ацетата никеля [Ni(CH3COO)2*2O] для получения 0,2 М раствора ацетата никеля. Затем туда же добавляют 0,5 М раствор гидроксида аммония. Полученная суспензия центрифугируется для отделения полученного нанокомпозита, состоящего из гидроксида никеля и нанотрубок. Нанокомпозит смешивают с дистиллированной водой в соотношении 1:1. Электроды готовят погружением подложки из никелевой пены в суспензию нанокомпозита. После высушивания на воздухе полученные образцы отжигаются при 280-320°С в течение 1,5 часов.

Недостатком данного способа является длительность подготовительного этапа с использованием концентрированной азотной кислоты, а также загрязнение получаемого продукта посторонними ионами.

В качестве прототипа рассмотрим способ приготовления композиционного материала (патент США US №2003/0235760 А1, опубл. 25.12.2003), состоящего из углерода и никеля, используемого в качестве анода в свинцовых аккумуляторных батареях.

Рассматриваемый способ получения соединения углерода и никеля включает приготовление водной дисперсии углерода (например, ацетиленовой сажи) с последующим добавлением водорастворимых солей никеля (например, нитрата никеля). Далее в полученную дисперсию по каплям добавляют раствор гидроксида натрия для закрепления соединения никеля на поверхности углерода. Полученные твердые частицы отделяют от раствора, промывают дистиллированной водой и сушат в течение 2 часов при температуре 120°С. Затем частицы выдерживают при температуре 300°С в присутствии воздуха в течение 30 минут для получения углеродного материала, содержащего NiO.

К недостаткам прототипа следует отнести загрязнение получаемого продукта нитрит-ионами, а также способ введения гидроксида натрия в раствор, при котором равномерность распределения частиц NiO по поверхности углеродных нанотрубок и размер кристаллитов определяется технологическими параметрами процесса: концентрацией и скоростью введения раствора гидроксида натрия, а также интенсивностью перемешивания суспензии. Существенное влияние на структуру получаемых частиц NiO будет оказывать изменяющаяся (уменьшающаяся) во времени концентрация прекурсора никеля, например нитрата никеля.

Технической задачей предлагаемого изобретения является разработка способа получения композиционного NiO/C материала, содержащего кристаллиты β-NiO размером 2-5 нм, позволяющего повысить качество получаемого материала за счет отсутствия примесей и снизить расходы на его получение за счет уменьшения энергозатрат путем сокращения времени технологического процесса и снижения температуры термообработки.

Получение композиционного NiO/C материала, содержащего наноразмерные кристаллиты β-NiO, обеспечивается предлагаемым способом. Суть способа состоит в электрохимическом получении оксида никеля в результате окисления и разрушения никелевых электродов под действием тока переменной полярности в суспензии углеродного носителя в растворе гидроксида одного из щелочных металлов с одновременным осаждением образующихся наночастиц оксида никеля на углеродный носитель, последующей фильтрации, промывке и просушке осадка.

Электрохимический процесс осуществляется под действием переменного тока частотой 50 Гц при средней величине тока, отнесенной к единице площади поверхности электродов, равной 0,3-1,5 А/см2 с использованием двух никелевых электродов, в растворах гидроксидов щелочных металлов концентрацией 2 моль/л, при этом температура раствора составляет 40-50°С, а сушка производится при температуре 80°С в течение 1 часа.

Предлагаемый способ получения композиционного NiO/C материала основан на явлении электрохимического окисления и разрушения никелевых электродов в растворах гидроксидов щелочных металлов под действием тока переменной полярности с одновременным осаждением образующихся наночастиц оксида никеля на углеродный носитель.

Предлагаемый способ позволяет получить композиционный, не содержащий примесей NiO/C материал с размером кристаллитов β-NiO 2-5 нм.

Способ осуществляется с использованием двух одинаковых электродов, выполненных из никелевой фольги. В качестве носителя используется углеродный носитель (Vulkan XC-72). В 2 моль/л раствор гидроксида щелочного металла вводится при перемешивании углеродный носитель, затем в раствор погружают параллельно друг другу электроды, при этом расстояние между ними составляет около 2 см. В течение часа на электроды подается переменный ток частотой 50 Гц при средней величине тока, отнесенной к единице площади поверхности электродов, равной 0,4 А/см2. Температура раствора находится в пределах 40-50°С. Полученную суспензию композиционного материала фильтруют, промывают осадок дистиллированной водой, сушат при температуре 80°С в течение 1 часа.

Пример 1.

Композиционный NiO/C материал был изготовлен следующим способом. В раствор гидроксида натрия концентрацией 2 моль/л при перемешивании был введен углеродный носитель Vulkan XC-72, в количестве 2,5 г/л. Затем в раствор были погружены электроды из никелевой фольги. На электроды подавался переменный ток плотностью 0,3 А/см2 в течение 2 часов, суспензия непрерывно перемешивалась, температура поддерживалась в пределах 40-42°С. Полученную суспензию композиционного материала фильтровали, осадок промывали дистиллированной водой, высушивали при температуре 80°С в течение 1 часа. Содержание наночастиц β-NiO в композиционном материале составило 25%. Размер кристаллитов β-NiO составил 1-3 нм.

Пример 2.

Процесс аналогичен приведенному в примере 1 и отличался тем, что плотность тока составила 0,8 А/см2, ток подавался в течение 1 часа. Температура поддерживалась в пределах 47-50°С. Содержание наночастиц β-NiO в композиционном материале составило 35%. Размер кристаллитов β-NiO составил 2-4 нм.

Пример 3.

Процесс аналогичен приведенному в примере 1 и отличался тем, что процесс проходил в растворе гидроксида калия концентрацией 2 моль/л, плотность тока составляла 0,3 А/см2, ток подавался в течение 2,5 часов, температура поддерживалась в пределах 40-43°С. Содержание наночастиц β-NiO в композиционном материале составило 20%. Размер кристаллитов β-NiO составил 3-5 нм.

Пример 4.

Процесс аналогичен приведенному в примере 3 и отличался тем, что плотность тока составила 0,8А/см2, ток подавался в течение 3,5 часов. Температура поддерживалась в пределах 48-51°С. Содержание наночастиц β-NiO в композиционном материале составило 60%. Размер кристаллитов β-NiO составил 2-3 нм.

На основании проведенных экспериментов можно заключить, что заявляемый способ обеспечивает получение композиционного NiO/C материала без примесей с содержанием β-NiO от 15 до 60% и размером кристаллитов β-NiO 1-5 нм.

Похожие патенты RU2449426C1

название год авторы номер документа
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ КАТАЛИЗАТОРА PT-NIO/C 2012
  • Смирнова Нина Владимировна
  • Леонтьева Дарья Викторовна
  • Куриганова Александра Борисовна
RU2486958C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА С НАНОРАЗМЕРНЫМИ ЧАСТИЦАМИ СПЛАВОВ ПЛАТИНЫ 2011
  • Смирнова Нина Владимировна
  • Леонтьева Дарья Викторовна
  • Леонтьев Игорь Николаевич
  • Куриганова Александра Борисовна
RU2455070C1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА NiO/C 2012
  • Смирнова Нина Владимировна
  • Леонтьева Дарья Викторовна
RU2501127C1
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОДНЫХ МАТЕРИАЛОВ ДЛЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ И СУПЕРКОНДЕНСАТОРОВ 2018
  • Куриганова Александра Борисовна
  • Чернышева Дарья Викторовна
  • Смирнов Роман Владимирович
RU2678438C1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ ТЕКСТИЛЬНЫХ ИЗДЕЛИЙ ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА 2013
  • Бринк Иван Юрьевич
  • Смирнова Нина Владимировна
  • Леонтьева Дарья Викторовна
RU2535276C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА С НАНОРАЗМЕРНЫМИ ЧАСТИЦАМИ ПЛАТИНЫ 2009
  • Смирнова Нина Владимировна
  • Кудрявцев Юрий Дмитриевич
  • Куриганова Александра Борисовна
  • Клушин Виктор Александрович
RU2424850C2
СПОСОБ ПОЛУЧЕНИЯ КОЛЛОИДНЫХ РАСТВОРОВ ПЛАТИНЫ 2009
  • Кудрявцев Юрий Дмитриевич
  • Смирнова Нина Владимировна
  • Куриганова Александра Борисовна
RU2424051C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ МОДИФИЦИРОВАННОГО ТЕРМОРАСШИРЕННОГО ГРАФИТА 2014
  • Ерошенко Виктор Дмитриевич
  • Смирнова Нина Владимировна
RU2576637C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА МЕДИ (I) 2014
  • Куриганова Александра Борисовна
  • Барбашова Анна Александровна
  • Смирнова Нина Владимировна
RU2570086C2
СПОСОБ ОСАЖДЕНИЯ ПОЛУПРОВОДНИКОВЫХ НАНОЧАСТИЦ ХАЛЬКОГЕНИДОВ СВИНЦА ИЗ КОЛЛОИДНЫХ РАСТВОРОВ 2015
  • Антипов Александр Анатольевич
  • Кутровская Стелла Владимировна
  • Кучерик Алексей Олегович
RU2587537C1

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО NiО/C МАТЕРИАЛА

Изобретение относится к области электрохимической энергетики, а именно к приготовлению активной массы электрода с наноразмерными частицами NiO на углеродном носителе, используемого в химических источниках тока, в частности в никель-металл-гидридных аккумуляторах, а также в суперконденсаторах. Способ получения композиционного NiO/C материала, содержащего 15-60% NiO и представляющего собой равномерно распределенные по поверхности углеродного носителя кристаллиты β-NiO со средним размером 2-5 нм, основан на получении наночастиц NiO в результате электрохимического окисления и разрушения двух никелевых электродов в растворах гидроксидов щелочных металлов концентрацией 2 моль/л под действием переменного тока частотой 50 Гц при средней величине тока, отнесенной к единице площади поверхности электродов, равной 0,3-1,5 А/см2, с одновременным осаждением образующихся наночастиц оксида никеля на углеродный носитель, последующем фильтровании полученной суспензии, промывке композита дистиллированной водой с его сушкой при 80°С в течение 1 часа. Изобретение позволяет повысить качество получаемого материала за счет отсутствия примесей и снизить расходы на его получение. 4 пр.

Формула изобретения RU 2 449 426 C1

Способ получения композиционного NiO/C материала, включающий электрохимическое получение оксида никеля путем окисления и разрушения никелевых электродов в суспензии углеродного носителя в растворе гидроксида одного из щелочных металлов с одновременным осаждением образующихся наночастиц оксида никеля на углеродный носитель, последующую фильтрацию, промывку и просушку осадка, отличающийся тем, что электрохимическое получение оксида никеля осуществляют под действием переменного тока частотой 50 Гц при средней величине тока, отнесенной к единице площади поверхности электродов, равной 0,3-1,5 А/см2 с использованием двух никелевых электродов, в растворах гидроксидов щелочных металлов концентрацией 2 моль/л, при этом температура раствора составляет 40-50°С, а сушку производят при температуре 80°С в течение 1 ч.

Документы, цитированные в отчете о поиске Патент 2012 года RU2449426C1

US 20030235760 Al, 25.12.2003
KR 2009124213 A, 03.12.2009
CN 1974402 A, 06.06.2007
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
KR 2009124199 A, 03.12.2009.

RU 2 449 426 C1

Авторы

Смирнова Нина Владимировна

Леонтьева Дарья Викторовна

Куриганова Александра Борисовна

Даты

2012-04-27Публикация

2010-10-04Подача