СПОСОБ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА Российский патент 2011 года по МПК C22B9/18 

Описание патента на изобретение RU2424335C1

Изобретение относится к спецэлектрометаллургии и может быть использовано для электрошлаковой выплавки слитков сплошного или полого сечения.

Известен способ электрошлаковой выплавки полого слитка с подачей в процессе выплавки флюса в центральную часть шлаковой ванны (см. выложенную заявку Японии № 54-115634, B22D 27/02, C22D 9/00, F27D 11/08, 1978 г.).

Более холодные слои шлака в центральной части шлаковой ванны опускаются в направлении кольцевой зоны формирования слитка, а затем, нагреваясь, поднимаются вдоль стенок наружного кристаллизатора, создавая направленные конвективные потоки, при этом излишки шлака сливаются.

В известном решении требуемый уровень шлаковой ванны поддерживается путем слива шлака через отверстия в стенке кристаллизатора, а флюс досыпается из бункера, при этом момент его подачи не взаимосвязан с величиной уменьшения уровня поверхности шлаковой ванны, что может привести к нарушению ее теплового баланса с изменением скорости расплавления расходуемого электрода и ухудшением качества металла выплавляемого слитка.

Известен способ электрошлаковой выплавки слитков с заливкой предварительно расплавленного шлака в кристаллизатор, при этом в процессе переплава в кристаллизатор вводят добавки перегретого шлака при одновременном удалении из кристаллизатора охлажденного шлака (см. авт. свид. СССР № 440073, МКИ C21C 5/56, 1972 г.).

Способ замены шлака в процессе переплава расходуемого электрода нарушает стабильность электрических параметров и величину вводимой мощности, что является причиной ухудшения качества металла выплавляемого слитка.

Ближайшим аналогом, принятым за протопит, является известное техническое решение, в котором в процессе электрошлакового переплава контролируют уровень поверхности шлаковой ванны контактным устройством и при опускании поверхности шлаковой ванны с размыканием контактов устройства с ее поверхностью подают команду на дозатор и осуществляют досыпку флюса в шлаковую ванну (см. выложенную заявку Японии № 53-22103, C22B 9/00, B22D 27/02, F27D 11/08, 1976 г.).

Досыпка твердого флюса в шлаковую ванну осуществляется только из условия контроля за уровнем поверхности шлаковой ванны, при этом не учитывается величина уменьшения ее поверхности, в результате чего может подаваться разное количество досыпаемого флюса, в том числе и чрезмерное количество, что не обеспечивает стабильность теплового баланса шлаковой ванны, ведет к изменению электрических параметров переплава и, тем самым, к ухудшению качества металла выплавляемого слитка.

Технический результат, обеспечиваемый предлагаемым техническим решением, - улучшение качества металла выплавляемого слитка.

Технический результат достигается тем, что в известном способе электрошлакового переплава расходуемого электрода в шлаковой ванне с контролем уровня ее поверхности и с уменьшением ее уровня подачей флюса в шлаковую ванну до восстановления прежнего уровня, согласно предложению дополнительно контролируют величину уменьшения уровня поверхности шлаковой ванны и при уменьшении ее уровня на 10-17% от заданного подают флюс в шлаковую ванну.

Технический результат достигается также тем, что флюс подают в шлаковую ванну со скоростью 1,7-2,3 кг/мин.

Технический результат достигается также тем, что в период подачи флюса увеличивают вводимую в шлаковую ванну мощность на 1,5-2,5%, а флюс подают на поверхность расходуемого электрода вблизи поверхности шлаковой ванны.

Совокупность предлагаемых признаков обеспечивает достижение технического результата и находится с ним в причинно-следственной связи следующим образом.

Известно, что даже сравнительно небольшие колебания количества шлака и его химсостава могут значительно повлиять на тепловой баланс процесса переплава, т.к. потери тепла от шлаковой ванны в стенку кристаллизатора являются основными (см. «Электрошлаковый переплав», вып.4. материалы V Международного симпозиума по технологии электрошлакового переплава, г.Питтсбург, США, Киев, «Наукова Думка», 1977 г., стр.245).

Однако в связи с образованием гарнисажа на стенке кристаллизатора требуемая величина шлаковой ванны уменьшается по ходу процесса наплавления слитка.

Поэтому для восстановления рафинирующих способностей шлаковой ванны, ее объема и теплового баланса в нее добавляют флюс.

Дополнительный контроль величины уменьшения уровня поверхности шлаковой ванны позволяет количественно оценить величину ее уменьшения и экспериментальным путем определить пределы величины добавляемой дозы флюса, исходя из условий предотвращения переохлаждения шлаковой ванны, изменения ее теплового баланса и условий плавления расходуемого электрода, тем самым обеспечивая достижение технического результата - улучшение качества металла выплавляемого слитка для изготовления изделий ответственного назначения.

При уменьшении уровня поверхности шлаковой ванны меньше 10% от заданного уровня трудно обеспечить точность подаваемой дозы флюса из-за ее сравнительно небольших величин, частых включений дозирующего устройства и его инерционности, в результате чего образуются очень много передозировок, приводящих к общему увеличению объема шлаковой ванны, что приводит к ее переохлаждению и образованию на поверхности выплавляемого слитка неровностей.

При снижении уровня поверхности шлаковой ванны больше 17% от заданного уровня вводимая в шлаковую ванну доза флюса оказывается чрезмерной, что вызывает увеличение толщины гарнисажа, нарушает тепловой баланс шлаковой ванны с образованием на поверхности выплавляемого слитка неровностей и шлаковых включений.

При проведении опытных плавок по предлагаемому способу было замечено, что при подаче флюса в шлаковую ванну с определенной скоростью качество выплавляемого слитка можно улучшать еще в большей степени.

Так, при подаче флюса в шлаковую ванну со скоростью 1,7-2,3 кг/мин поверхность выплавляемого слитка становится более гладкой, уменьшается толщина гарнисажа. Это происходит за счет уменьшения тепловых затрат на расплавление подаваемой дозы флюса, но требует более точной регулировки и более продолжительно во времени.

Если в период подачи флюса увеличивать вводимую в шлаковую ванну мощность на 1,5-2,5% и при этом подавать флюс на поверхность расходуемого электрода, вблизи поверхности шлаковой ванны было замечено, что гарнисаж на поверхности выплавляемого слитка практически отсутствует, а его поверхность близка к идеальной, т.е. гладкая и ровная. В этом варианте предлагаемый способ имеет меньше всего отклонений от теплового баланса шлаковой ванны, но является более сложным и требует дополнительных энергозатрат.

На чертеже представлена принципиальная схема реализации предложенного способа электрошлакового переплава.

Она включает расходуемый электрод 1, подаваемый в шлаковую ванну 2 по мере расплавления. Упомянутая шлаковая ванна 2 размещена в пределах внутреннего пространства кристаллизатора 3, в котором также размещена металлическая ванна 4, образующаяся при расплавлавлении расходуемого электрода 1. Упомянутая металлическая ванна 4 кристаллизуется в слиток 5, неподвижно размещенный на поддоне 6. Кристаллизатор 3 выполнен коротким и перемещаемым навстречу расходуемому электроду 1. Кристаллизатор 3 снабжен патрубками 7 и 8 для подвода и отвода охлаждающей воды. В стенке кристаллизатора 3 размещены бесконтактные датчики уровня, включающие излучатель 9 для контроля уровня поверхности металлической ванны 4, излучатель 10 для контроля уровня поверхности шлаковой ванны 2 и излучатель 11 для контроля величины уменьшения уровня поверхности шлаковой ванны 2. Соответственно, напротив упомянутых излучателей 9, 10 и 11 размещены приемники сигналов 12. 13 и 14. Кроме того, на представленной схеме показаны бункера-дозаторы 15 и 16 для подачи флюса 17 на поверхность шлаковой ванны 2. На чертеже представлен вариант подачи флюса 17 на поверхность расходуемого электрода 1.

Реализация предложенного технического решения была осуществлена в рамках научно-исследовательской работы: «Разработка технологии электрошлакового переплава для получения заготовок сплошных и полых слитков ответственного назначения тяжелого и энергетического машиностроения».

Выплавлялись слитки сплошного сечения диаметром 550 мм, весом 2300 кг из стали 15Х1М1Ф.

Оптимальные электрические режимы плавки, весовую и линейную скорости наплавления, требуемое количество флюса, высоту шлаковой ванны и мощность, выделяемую в шлаковой ванне, определяли по методике расчета режима электрошлакового переплава для получения крупных слитков (см. «Труды ЦНИИТМАШ», № 152, М., 1980 г., стр.5-9).

Полученные данные были скорректированы при экспериментальных плавках, в результате чего получили следующее: вес флюса 92 кг, высота шлаковой ванны 13,5 см, линейная скорость наплавления слитка 98,5 см/час, весовая скорость плавки 678 кг/час, мощность, выделяемая в шлаковой ванне, 1577,5 кВт.

В зоне плавления собрали плавильную оснастку, при этом расходуемый электрод 1 ввели во внутреннее пространство кристаллизатора 3, установленного на неподвижном поддоне 6.

Залили во внутреннее пространство упомянутого кристаллизатора 3 жидкий шлак 2 и проконтролировали уровень его поверхности датчиком уровня, включающим излучатель 10 и приемник 13.

С включением источника тока в цепи расходуемый электрод 1 - шлаковая ванна 2 и поддон 6 начал протекать электрический ток с выделением тепла в шлаковой ванне 2 и с расплавлением расходуемого электрода 1, который, расплавляясь, образует жидкую металлическую ванну 4, нижняя часть которой постепенно кристаллизуется в слиток 5, располагаемый на неподвижном поддоне 6.

В процессе переплава расходуемого электрода 1 кристаллизатор 3 перемещается вверх навстречу расходуемому электроду 1, двигающемуся вниз.

Перемещение кристаллизатора 3 осуществлялось с контролем уровня поверхности металлической ванны 4, датчиком уровня, включающим излучатель 9 и приемник 12.

Перемещение расходуемого электрода 1 осуществлялось автоматическим регулятором в соответствии с заданными электрическими параметрами.

В процессе переплава расходуемого электрода 1 и кристаллизации слитка 5 происходит расход шлаковой ванны 2 на образование гарнисажа 18, при этом уровень ее поверхности понижается, о чем свидетельствует упомянутый датчик уровня ее поверхности, включающий излучатель 10 и приемник 13.

С понижением уровня поверхности шлаковой ванны 2 до ее размещения напротив датчика уровня, включающего излучатель 11 и приемник 14, подается сигнал на бункера-дозаторы 15 и 16 для подачи флюса 17 в шлаковую ванну 2.

Упомянутый датчик уровня, включающий излучатель 11 и приемник 14, фиксирует заданную величину понижения уровня поверхности шлаковой ванны 2 относительно первоначально установленной величины, фиксируемой датчиком уровня с излучателем 10 и приемником 13.

Величина понижения уровня поверхности шлаковой ванны 2 выбрана экспериментально и составляет 10-17% от всей высоты шлаковой ванны 2.

Таким образом, при высоте шлаковой ванны 2, равной 13,5 см, допустимая величина уменьшения уровня поверхности шлаковой ванны 2 лежит в пределах 1,3-2,3 см.

При отклонениях за пределы допустимой величины уменьшения уровня поверхности шлаковой ванны 2, как уже упоминалось, качество металла выплавляемого слитка не соответствует техническому результату из-за плохого качества поверхности: наличие неровностей и шлаковых включений.

При проведении экспериментальных плавок отрабатывались такие приемы изменения скорости подачи флюса в шлаковую ванну 2. При этом было установлено, что в сравнении с пунктом 1 предлагаемой формулы, когда весь вводимый флюс вводится единовременно, подача флюса со скоростью в пределах 1,7-2,3 кг/мин усваивается шлаковой ванной 2 более благоприятно, т.к. процесс введения флюса растянут во времени и в меньшей степени переохлаждает шлаковую ванну. Это уменьшает толщину гарнисажа 18, более равномерно прогревается шлаковая ванна 2 а поверхность слитка имеет меньше неровностей и шлаковых включений. Однако этот прием более сложен в осуществлении, т.к. требует более сложного дозирующего устройства для регулирования скорости подачи.

В случае выхода за пределы регулириуемой подачи 1,7-2,3 кг/мин требуется регулировка и скорости наплавления слитка, т.к. при скорости меньше 1,7 кг/мин скорость наплавления слитка обгоняет скорость подачи флюса и ко времени срабатывания излучателя 10 и приемника 13, сигнализирующих о том, что уровень поверхности шлаковой ванны 2 достиг первоначальной величины, не вся доза флюса оказывается поданной, что уменьшает рафирирующие способности флюса и ухудшает химсостав выплавляемого слитка.

При скорости подачи флюса больше, чем 2,3 кг/мин, приращение качества металла выплавляемого слитка в сравнении с предлагемой формулой по п.1 отсутствует.

В процессе экспериментальных плавок было также проверено влияние увеличения мощности с подачей флюса на поверхность расходуемого электрода 1 вблизи поверхности шлаковой ванны 2.

Увеличение мощности в пределах 1,5-2,5% от заданной величины в период подачи флюса обеспечивает ввод в шлаковую ванну 2 дополнительного тепла, что исключает ее переохлаждение, а флюс, подаваемый на поверхность расходуемого электрода 1, быстрее прогревается. Это объясняет самое высокое качество металла у выплавляемых слитков.

Однако при подаче флюса на поверхность расходуемого электрода 1 очень быстро разрушается та часть подающего устройства, которая находится вблизи его поверхности, при этом подача становится некотролируемой, вплоть до полного прекращения.

Увеличение вводимой мощности в заявляемых пределах без подогрева флюса от поверхности расходуемого электрода 1 неэффективно, т.к. в связи с инерционностью системы регулирования и относительно коротким периодом ввода флюса изменение электрических параметров, регулирующих вводимую мощность, не успевают в достаточной степени прогреть шлаковую ванну 2.

А увеличение вводимой в шлаковую ванну 2 мощности больше, чем на 2,5%, вызывает изменение электрических параметров, заложенных в систему автоматического регулирования, что искажает систему регулирования, увеличивает скорость наплавления и рост глубины металлической ванны 4, что ухудшает качество выплавляемого металла.

Увеличение вводимой мощности меньше 1,5% от заданной величины не способствует улучшению качества металла выплавляемого слитка в сравнении с п.1 формулы.

При проведении плавок в качестве датчиков уровня использовались уровнемеры позиционные БПУ-1КМ для бесконтактной регистрации наличия и отсутствия жидкого или сыпучего материала за стенкой внутри контролируемой емкости в зоне установки уровнемера путем определения в этой зоне изменения мощности дозы гамма-излучения.

Как уже было отмечено, способ позволяет получать слитки с высоким качеством металла для изготовления изделий ответственного назначения.

Похожие патенты RU2424335C1

название год авторы номер документа
СПОСОБ ЭЛЕКТРОШЛАКОВОЙ ВЫПЛАВКИ ПОЛОГО СЛИТКА 2009
  • Дуб Алексей Владимирович
  • Дуб Владимир Семенович
  • Полушин Александр Александрович
  • Каманцев Сергей Владимирович
  • Швейкерт Марина Ивановна
  • Нехамин Сергей Маркович
  • Левков Леонид Яковлевич
  • Сафронов Александр Афанасьевич
  • Кригер Юрий Николаевич
  • Иоффе Юрий Соломонович
  • Киссельман Михаил Анатольевич
  • Черняк Александр Иванович
  • Свитенко Игорь Александрович
  • Карев Анатолий Андреевич
  • Бабанин Николай Алексеевич
RU2424325C2
УСТАНОВКА ДЛЯ ЭЛЕКТРОШЛАКОВОЙ ВЫПЛАВКИ КРУПНЫХ ПОЛЫХ И СПЛОШНЫХ СЛИТКОВ 2011
  • Дуб Алексей Владимирович
  • Дуб Владимир Семенович
  • Соколов Сергей Олегович
  • Каманцев Сергей Владимирович
  • Каширина Жания Казбековна
  • Красовский Анатолий Владимирович
  • Бессонов Александр Васильевич
  • Левков Леонид Яковлевич
  • Свитенко Игорь Александрович
  • Кригер Юрий Николаевич
  • Берман Леонид Исаевич
  • Матыцин Николай Федотович
  • Дементьев Андрей Владимирович
  • Семенов Виктор Владимирович
RU2456355C1
СПОСОБ ПЕРЕМЕШИВАНИЯ ШЛАКОВОЙ ВАННЫ ПРИ ЭЛЕКТРОШЛАКОВОМ ПЕРЕПЛАВЕ РАСХОДУЕМОГО ЭЛЕКТРОДА 2012
  • Левков Леонид Яковлевич
  • Кригер Юрий Николаевич
  • Орлов Сергей Витальевич
  • Дуб Алексей Владимирович
  • Ульянов Михаил Васильевич
  • Каширина Жанна Казбековна
  • Шурыгин Дмитрий Александрович
  • Свитенко Игорь Александрович
  • Киссельман Михаил Анатольевич
  • Каманцев Сергей Владимирович
  • Бессонов Александр Васильевич
  • Красовский Анатолий Владимирович
  • Губанков Евгений Сергеевич
  • Снежинская Елена Юрьевна
RU2483125C1
СПОСОБ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА 2011
  • Дуб Владимир Семенович
  • Дуб Алексей Владимирович
  • Соколов Сергей Олегович
  • Каманцев Сергей Владимирович
  • Бессонов Александр Васильевич
  • Левков Леонид Яковлевич
  • Свитенко Игорь Александрович
  • Кригер Юрий Николаевич
  • Орлов Сергей Витальевич
  • Нехамин Сергей Маркович
  • Киссельман Михаил Анатольевич
  • Деднев Александр Александрович
  • Черняк Александр Иванович
  • Дементьев Андрей Владимирович
  • Семенов Виктор Владимирович
RU2487182C1
СПОСОБ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Левков Леонид Яковлевич
  • Кригер Юрий Николаевич
  • Орлов Сергей Витальевич
  • Дуб Владимир Семенович
  • Каширина Жанна Казбековна
  • Свитенко Игорь Александрович
  • Каманцев Сергей Владимирович
  • Снежинская Елена Юрьевна
RU2497959C1
СПОСОБ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА 2011
  • Дуб Владимир Семенович
  • Дуб Алексей Владимирович
  • Соколов Сергей Олегович
  • Каманцев Сергей Владимирович
  • Бессонов Александр Васильевич
  • Левков Леонид Яковлевич
  • Свитенко Игорь Александрович
  • Кригер Юрий Николаевич
  • Орлов Сергей Витальевич
  • Нехамин Сергей Маркович
  • Киссельман Михаил Анатольевич
  • Деднев Александр Александрович
  • Дементьев Андрей Владимирович
  • Семенов Виктор Владимирович
RU2479649C1
СПОСОБ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Нехамин Сергей Маркович
  • Дуб Алексей Владимирович
  • Дуб Владимир Семенович
  • Полушин Александр Александрович
  • Каманцев Сергей Владимирович
  • Черняк Александр Иванович
  • Киссельман Михаил Анатольевич
  • Деднев Александр Александрович
  • Левков Леонид Яковлевич
  • Сафронов Александр Афанасьевич
  • Свитенко Игорь Александрович
  • Кригер Юрий Николаевич
  • Иоффе Юрий Соломонович
  • Швейкерт Марина Ивановна
RU2448173C2
СПОСОБ РАСКИСЛЕНИЯ СТАЛИ ПРИ ЭЛЕКТРОШЛАКОВОМ ПЕРЕПЛАВЕ 2016
  • Левков Леонид Яковлевич
  • Дуб Владимир Семенович
  • Шурыгин Дмитрий Александрович
  • Орлов Сергей Витальевич
  • Уткина Ксения Николаевна
  • Гамов Павел Александрович
RU2630100C1
СПОСОБ ПОЛУЧЕНИЯ БИМЕТАЛЛИЧЕСКОГО СЛИТКА 2022
  • Мишнев Петр Александрович
  • Адигамов Руслан Рафкатович
  • Балашов Сергей Александрович
  • Костин Сергей Дмитриевич
  • Соболев Алексей Владимирович
  • Яковлева Полина Сергеевна
  • Павлов Александр Александрович
  • Родионова Ирина Гавриловна
  • Амежнов Андрей Владимирович
  • Бакланова Ольга Николаевна
  • Куторкина Виктория Александровна
RU2786101C1
СПОСОБ КОНТРОЛЯ УРОВНЯ ЖИДКОЙ МЕТАЛЛИЧЕСКОЙ ИЛИ ШЛАКОВОЙ ВАННЫ В КРИСТАЛЛИЗАТОРЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Нехамин Сергей Маркович
  • Деднев Александр Александрович
  • Дуб Владимир Семенович
  • Соколов Сергей Олегович
  • Левков Леонид Яковлевич
  • Киссельман Михаил Анатольевич
  • Каманцев Сергей Владимирович
  • Ролдугин Владимир Алексеевич
  • Орлов Сергей Витальевич
  • Швейкерт Марина Ивановна
  • Новиков Дмитрий Валерьевич
  • Кригер Юрий Николаевич
  • Елизаров Владислав Александрович
  • Шурыгин Дмитрий Александрович
RU2456118C1

Иллюстрации к изобретению RU 2 424 335 C1

Реферат патента 2011 года СПОСОБ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА

Изобретение относится к спецэлектрометаллургии и может быть использовано для электрошлаковой выплавки слитков сплошного или полого сечения. В способе осуществляют контроль уровня поверхности шлаковой ванны и подачу флюса с понижением ее уровня до восстановления прежнего уровня. Контролируют величину понижения уровня поверхности шлаковой ванны относительно первоначально установленной величины и при понижении ее уровня на 10-17% от заданного подают флюс на поверхность расходуемого электрода вблизи поверхности шлаковой ванны со скоростью 1,7-2,3 кг/мин. Изобретение позволяет улучшить качество металла выплавляемого слитка за счет стабилизации теплового баланса шлаковой ванны. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 424 335 C1

1. Способ электрошлакового переплава расходуемого электрода в шлаковой ванне, включающий контроль уровня поверхности шлаковой ванны и подачу флюса с понижением ее уровня до восстановления прежнего уровня, отличающийся тем, что контролируют величину понижения уровня поверхности шлаковой ванны относительно первоначально установленной величины и при понижении ее уровня на 10-17% от заданного подают флюс на поверхность расходуемого электрода вблизи поверхности шлаковой ванны со скоростью 1,7-2,3 кг/мин.

2. Способ по п.1, отличающийся тем, что в период подачи флюса увеличивают вводимую в шлаковую ванну мощность на 1,5-2,5%.

Документы, цитированные в отчете о поиске Патент 2011 года RU2424335C1

Веникодробильный станок 1921
  • Баженов Вл.
  • Баженов(-А К.
SU53A1
Способ электрошлаковой выплавки слитков 1972
  • Медовар Б.И.
  • Баглай В.М.
  • Ус В.И.
  • Верник А.Б.
  • Каменский Л.А.
SU440073A1
УСТРОЙСТВО для КОНТРОЛЯ и СОРТИРОВКИ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ 0
SU279068A1
0
SU340615A1

RU 2 424 335 C1

Авторы

Дуб Алексей Владимирович

Дуб Владимир Семенович

Полушин Александр Александрович

Каманцев Сергей Владимирович

Швейкерт Марина Ивановна

Нехамин Сергей Маркович

Левков Леонид Яковлевич

Сафронов Александр Афанасьевич

Кригер Юрий Николаевич

Иоффе Юрий Соломонович

Киссельман Михаил Анатольевич

Черняк Александр Иванович

Баринова Светлана Николаевна

Свитенко Игорь Александрович

Даты

2011-07-20Публикация

2009-10-29Подача