МЕТОД ОПРЕДЕЛЕНИЯ РАСПРЕДЕЛЕНИЯ ВЕЩЕСТВ В СФЕРИЧЕСКИХ АМОРФНЫХ НАНОЧАСТИЦАХ Российский патент 2011 года по МПК G01N33/15 B82B1/00 

Описание патента на изобретение RU2424513C1

Изобретение относится к нанотехнологии, а именно к средствам доставки лекарственных и диагностических субстанций на основе наночастиц, которые обладают рядом преимуществ (например, повышение биодоступности субстанции, снижение побочных эффектов, увеличение времени действия) по сравнению с традиционными лекарственными формами.

Существуют разнообразные способы, применяемые для определения функциональных групп на поверхности наночастиц. Среди них: титриметрия (Аверко-Антонович И.Ю., Бикмуллин Р.Т. Методы исследования структуры и свойств полимеров. КГТУ, Казань, 2002), фотометрический анализ (Дарбре А. Практическая химия белка. Пер. с англ. М., «Мир», 1989), флуоресцентный анализ (Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele М. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972. Vol.178. P.871-872). Выбор метода, как правило, зависит от необходимой точности определения. Общим существенным недостатком вышеперечисленных методов является необходимость подобрать реагент, специфично реагирующий с функциональными группами на поверхности наночастиц.

Техническим результатом предлагаемого изобретения является определение распределения веществ в сферических аморфных наночастиц (САНЧ).

Настоящее изобретение описывает экономичный и эффективный метод определения распределения веществ, в том числе лекарственных и диагностических субстанций внутри САНЧ, отличающийся от ранее предложенных своей универсальностью.

Данный технический результат достигается предлагаемым методом, заключающимся в последовательной экстракции дисперсий САНЧ органическими растворителями: несмешивающимися с дисперсионной средой, и ограниченно растворяющих материал САНЧ, с последующим определением концентраций высвобожденного вещества в экстрактах.

Метод был опробован на двух видах САНЧ: САНЧ, полученных из смеси лупановых тритерпеноидов (СЛТ, бетулин 60±5%, лупеол 30±4%, 3-О-кофеат бетулина 9±3%) и САНЧ, полученных из индивидуального лупанового тритерпеноида - 3-О-кофеата бетулина (КБ). Для определения распределения веществ в САНЧ, в наночастицы загружали следующие субстанции: 3-метоксибензантрон (МБА, 0.5% мас.) и доксорубицин (ДОКСО, 2%, 5%, 10% мас.).

Пример 1. Распределение 3-метоксибензантрона в САНЧ, полученных из смеси лупановых тритерпеноидов.

Дисперсии САНЧ и САНЧ с загруженными веществами получали по методу (А.Н.Бастрич и др. Солюбилизация тритерпеноидов лупанового ряда, выделенных из бересты. Биотехнология, 2008, 6, С.51-59).

Распределение МБА в САНЧ определяли следующим образом.

5 мл свежеприготовленной дисперсии САНЧ с включенным МБА (0.5% мас.) смешивали с 1 мл толуола и встряхивали в течение 30 с. Через 10 мин органический слой заменяли 1 мл свежей порции толуола. Концентрацию высвобожденного МБА (% мас.) в толуольных экстрактах определяли спектрофотометрически в максимуме поглощения при 418 нм, используя формулу в соответствии с законом Бугера-Ламберта-Бэра:

W=(Aλ·Vp·M/ξλ·l·mв)·100%,

где Aλ - оптическая плотность; Vp - объем органического растворителя (1 мл); M - молярная масса вещества; ξλ - коэффициент молярного поглощения при длине волны λ; l - длина оптического пути; mв - начальная масса вещества в САНЧ.

На фиг.1 представлен график зависимости концентрации экстрагированного МБА от номера экстракта. За 30 с экстракции дисперсий САНЧ толуолом устанавливается равновесие - образуется насыщенный раствор материала наночастиц в толуоле, значит, если МБА в монодисперсных САНЧ распределяется равномерно, то при каждой экстракции растворяется одинаковая масса МБА. В этом случае, график зависимости концентрации экстрагированного МБА от номера экстракта должен быть параллельным оси абсцисс. Сравнением экспериментальных и гипотетических данных определяем, что МБА распределяется неравномерно, концентрируется в поверхностных слоях САНЧ, поскольку толщина экстрагируемого слоя САНЧ не превышает 10 нм (по данным динамического светорассеивания).

Пример 2. Распределение 3-метоксибензантрона в САНЧ, полученных из смеси лупановых тритерпеноидов.

Распределение МБА в САНЧ определяли методом, описанным в примере 1, с той разницей, что в качестве экстрагента был использован гексан (фиг.1Б). Из фиг.1 (А и Б) видно, что данные о распределении МБА в САНЧЛТ полученные с использованием разных экстрагентов, толуола и гексана, схожи. Различие в концентрации экстрагированного МБА при каждой экстракции объясняется разной растворяющей способностью двух растворителей. По причине высокой летучести гексана, толуол предпочтителен.

Пример 3. Распределение доксорубицина в САНЧ, полученных из смеси лупановых тритерпеноидов.

Распределение ДОКСО, загруженного в САНЧ, определяли по методу, описанному в примере 1, с той разницей, что концентрацию высвобожденного ДОКСО определяли при 480 нм. Включение ДОКСО в возрастающих концентрациях (2%, 5% и 10% мас.) в САНЧ привело к снижению доли ДОКСО, содержавшегося в первом экстракте почти втрое (фиг.2А, Б и С). Это означает, что увеличение доли ДОКСО загружаемого в САНЧ, способствует его более равномерному распределению.

Пример 4. Распределение 3-О-кофеат бетулина в САНЧ, полученных из смеси лупановых тритерпеноидов.

Смесь лупановых тритерпеноидов состоит из трех гидрофобных компонентов, из них только 3-О-кофеат бетулина поглощает в электронных спектрах, что дает возможность определить его распределение внутри САНЧ. Методом, описанным в примере 1, с той разницей, что максимум поглощения КБ находится при 325 нм, определили, КБ распределяется в САНЧ аналогично МБА и ДОКСО, т.е. локализуется в поверхностных слоях САНЧ (фиг.2Д).

Результаты экспериментов, проиллюстрированных в примерах 1, 3, 4, сведены в таблице.

Таблица Параметры распределения исследуемых субстанций внутри САНЧ, образованных из смеси лупановых тритерпеноидов. Название субстанции 3-метоксибензантрон (0.5% мас.) 3-О-кофеат бетулина доксорубицин (2% мас.) (5% мас.) (10% мас.) Концентрация вещества в первом экстракте (% масс.) 43 45 54 37 24

Пример 5. Распределение 3-метоксибензантрона в САНЧ, полученных из 3-О-кофеат бетулина.

Методом, описанным в примере 1, определили, что загруженный МБА (0.5% мас.) внутри САНЧ, образованных из КБ, распределяется наиболее равномерно из всех изученных веществ (фиг.3).

Предложенный метод позволяет определить функциональные группы на поверхности сферических аморфных наночастиц и, как результат, направления возможных модификаций их поверхности.

Похожие патенты RU2424513C1

название год авторы номер документа
СПОСОБ ВЫДЕЛЕНИЯ СМЕСИ ДЛЯ ПОЛУЧЕНИЯ ВОДНЫХ ДИСПЕРСИЙ СФЕРИЧЕСКИХ НАНОЧАСТИЦ 2009
  • Цалман Анна Яновна
  • Безруков Денис Алексеевич
  • Каплун Александр Петрович
  • Поручикова Лариса Арсентьевна
  • Швец Виталий Иванович
RU2424516C1
СПОСОБ ПОЛУЧЕНИЯ ВОДНЫХ ДИСПЕРСИЙ НАНОЧАСТИЦ ИЗ СМЕСИ ПРИРОДНЫХ ТРИТЕРПЕНОИДОВ 2012
  • Кудрин Максим Сергеевич
  • Безруков Денис Алексеевич
  • Каплун Александр Петрович
RU2494754C1
СПОСОБ ПОЛУЧЕНИЯ ВОДНЫХ ДИСПЕРСИЙ СФЕРИЧЕСКИХ НАНОЧАСТИЦ ИЗ ТРИТЕРПЕНОИДОВ КОРЫ БЕРЕЗЫ 2010
  • Лыу Татьяна Нгоковна
  • Быкова Надежда Владимировна
  • Безруков Денис Алексеевич
  • Каплун Александр Петрович
  • Поручикова Лариса Арсентьевна
  • Швец Виталий Иванович
RU2454241C2
КОМПОЗИЦИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ И СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСИИ ЕЕ 2006
  • Каплун Александр Петрович
  • Балакшин Владимир Владимирович
  • Чистяков Алексей Николаевич
RU2322091C1
НОСИТЕЛЬ ЛЕКАРСТВЕННЫХ И ДИАГНОСТИЧЕСКИХ СРЕДСТВ 2006
  • Каплун Александр Петрович
  • Илларионов Владимир Владимирович
  • Балакшин Владимир Владимирович
  • Чистяков Алексей Николаевич
RU2322998C1
СПОСОБ ПОЛУЧЕНИЯ АДЪЮВАНТА ДЛЯ ВАКЦИН 2014
  • Красильников Игорь Викторович
  • Кулиш Дмитрий Михайлович
  • Бражкин Александр Леонидович
  • Доронин Александр Николаевич
RU2545717C1
СПОСОБ ПОЛУЧЕНИЯ АДЪЮВАНТА ДЛЯ ВИРУСНЫХ ВАКЦИН 2014
  • Красильников Игорь Викторович
  • Николаева Алевтина Максимовна
  • Иванов Александр Викторович
RU2545714C1
ВАКЦИНА ПРОТИВ ГРИППА 2014
  • Сульдин Александр Владимирович
  • Доронин Александр Николаевич
RU2546861C1
Способ получения липосомальной формы бетулина, обладающей гепатопротекторной активностью 2019
  • Кулаков Иван Вячеславович
  • Карбаинова Анастасия Андреевна
  • Грищенко Станислав Юрьевич
  • Сунцова Ольга Александровна
  • Лыско Светлана Борисовна
  • Красиков Анатолий Пантелеевич
RU2740553C2
СПОСОБ ПОЛУЧЕНИЯ БЕТУЛИНА ИЗ БЕРЕСТЫ 2012
  • Коптелова Елена Николаевна
  • Богданович Николай Иванович
  • Кутакова Наталья Алексеевна
  • Третьяков Сергей Иванович
RU2501805C1

Иллюстрации к изобретению RU 2 424 513 C1

Реферат патента 2011 года МЕТОД ОПРЕДЕЛЕНИЯ РАСПРЕДЕЛЕНИЯ ВЕЩЕСТВ В СФЕРИЧЕСКИХ АМОРФНЫХ НАНОЧАСТИЦАХ

Изобретение относится к области биотехнологии, более конкретно к средствам доставки лекарственных и диагностических субстанций на основе наночастиц, и описывает метод определения распределения веществ, в том числе лекарственных и диагностических субстанций, в сферических аморфных наночастицах с помощью последовательной экстракции дисперсий этих частиц органическими растворителями несмешивающимися с дисперсионной средой и ограниченно растворяющими материал наночастиц, с последующим определением концентраций высвобожденного вещества в экстрактах. Данный метод позволяет определить функциональные группы на поверхности сферических аморфных наночастиц и, как результат, направления возможных модификаций их поверхности. 1 табл., 3 ил.

Формула изобретения RU 2 424 513 C1

Метод определения распределения веществ в сферических аморфных наночастицах с помощью нескольких последовательных экстракций данного вещества из дисперсии наночастиц равными объемами органического растворителя, не смешивающегося с дисперсионной средой и ограниченно растворяющего материал сферических аморфных наночастиц с последующим определением концентраций экстрагированного вещества в экстрактах при каждой экстракции и оценкой равномерности распределения вещества в наночастицах по указанным концентрациям.

Документы, цитированные в отчете о поиске Патент 2011 года RU2424513C1

UNDERFRIEND S
et al
Science
Контрольный висячий замок в разъемном футляре 1922
  • Назаров П.И.
SU1972A1
Способ получения кодеина 1922
  • Гундобин П.И.
SU178A1
СПОСОБ ОПРЕДЕЛЕНИЯ МИКРОКОЛИЧЕСТВ БЕЛКОВЫХ СОЕДИНЕНИЙ В ПОЧЕЧНЫХ КАМНЯХ 2003
  • Борбат В.Ф.
  • Голованова О.А.
  • Пятанова П.А.
  • Россеева Е.В.
RU2239195C1
СПОСОБ ЭКСПРЕССНОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ПЕТРОПОРФИРИНОВ В НЕФТЯНОМ СЫРЬЕ 1993
  • Галимов Р.А.
  • Кривоножкина Л.Б.
  • Романов Г.В.
RU2054670C1
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛЕВОДНЫХ КОМПОНЕНТОВ В КЛЕТОЧНЫХ ЯДРАХ 1992
  • Иванова Э.А.
  • Вафина Г.Х.
  • Ремеева Р.Г.
RU2108571C1
Способ анализа композиционных материалов на основе полиолефинов 1981
  • Конюшко Лариса Ивановна
  • Лесникович Анатолий Иванович
  • Федеев Савелий Сафонович
  • Майорова Нелли Зиновьевна
  • Гернович Наталья Данииловна
SU1010558A1

RU 2 424 513 C1

Авторы

Хлебников Виталий Константинович

Каплун Александр Петрович

Богуславский Леонид Исаакович

Попенко Владимир Иванович

Швец Виталий Иванович

Даты

2011-07-20Публикация

2009-10-30Подача