СПОСОБ ПОЛУЧЕНИЯ ЕВРОПИЯ-155 ДЛЯ ГАММА-ДЕФЕКТОСКОПИИ Российский патент 2011 года по МПК G21G1/10 

Описание патента на изобретение RU2431211C1

Изобретение относится к области ядерной физики, а точнее к производству изотопов для использования в качестве источника гамма-излучения в дефектоскопах при анализе материалов без их разрушения.

Известны способы получения радиоактивных изотопов, например способ получения радиоизотопа тулия-170 [1]. Использование тулия-170 в гамма-дефектоскопии рассмотрено в работе [2]. Тулий-170 имеет период полураспада 128 суток. В связи с этим требуется частая перезарядка гамма-дефекоскопа, что обуславливает низкую производительность и значительные материальные затраты.

В тоже время источник на основе тулия-170 является единственным удовлетворительным источником для просвечивания легких сплавов, например, алюминия толщиной от 3 до 50 мм.

Тулий-170 возможно заменить на близкий ему по энергетическому спектру европий-155, период полураспада которого, примерно, 5 лет.

Известен способ получения европия-155 путем облучения в реакторе изотопа самария-154 [3] - прототип. Однако накоплению количества европия-155 в мишени необходимого и достаточного для промышленного использования в гамма-дефектоскопии препятствует превращение европия-155 в короткоживущий изотоп европий-156 в результате реакции захвата нейтрона, что приводит к «выгоранию», к исчезновению изотопа европия-155 практически сразу после его появления в мишени.

Технический результат, получаемый при реализации предлагаемого способа, заключается в повышении производительности и снижении материальных затрат за счет увеличения срока перезарядки гамма-дефектоскопа.

Указанный технический результат достигается за счет того, что в способе получения европия-155 для использования в гамма-дефектоскопии при облучении ионизирующим излучением мишени с самарием-154 облучение мишени проводят протонным пучком циклотрона. Изотоп самария-154 с обогащением 98,6% имеет химическую форму в виде оксида Sm2O3, плотность 7,54 г/см3. Образование европия-155 происходит по схеме:

Протоны могут поглощаться ядром мишени с зарядом Z и образовывать составные ядра с последующим испусканием гамма-квантов. Критическая энергия протона определяется кулоновским барьером ЕВ, который равен [4]:

ЕВ≈Z·А-1/3≈0,8·Z2/3 МэВ

При Z=63 имеем ЕВ=12,6 МэВ.

Удельная активность накопившегося радионуклида равна [1]:

А22·N01·(∩1/∩2-∩1)[ехр(-∩1·t)-ехр(-∩2·t),

где N01 - количество ядер исходного стабильного нуклида Sm-154 в одном грамме оксида Sm2O3; λ2 - константа распада образующего радионуклида Eu-155; Ф - плотность потока протонов; σ1 - сечение поглощения протона ядром Sm-154; σ2 - сечение поглощения протона ядром Eu-155; ∩1=Ф·σ1; ∩22+Ф·σ2.

Наработку радионуклида европий-155 можно производить на ускорителе протонов типа У-150 предприятии ЗАО «Циклотрон». Ускоритель работает в режиме ускорения протонов до энергии 20-23 МэВ. Средний ток внутреннего пучка при облучении мишеней достигает 1100 мкА [9].

Исходными данными для расчета удельной активности радионуклида являются: N01=3,37·1021 ядер Sm-154/г оксида, ∩1=1,53·10-8 с-1, λ2=0,44·10-8 с-1, ∩2=1,97·10-8 с-1. Удельная активность радионуклида европий-155 при облучении на ускорителе протонов мишени из самария-154 в течение t=1·107 c=100 суток достигнет величины А2=67 Ки/г.

Таким образом, полученных активностей радионуклида европий-155 оказывается вполне достаточно для получения удовлетворительной степени выявляемости дефектов и имеется возможность использования в дефектоскопии радионуклида европия-155 вместо тулия-170.

Источники информации

1. Левин В.И. Получение радиоактивных изотопов. М.: Атомиздат. 1972, стр. 216-217.

2. Румянцев С.В. Радиационная дефектоскопия. М.: Атомиздат. 1974, стр.120-121.

3. Промышленная радиография. Перевод с английского под редакцией А.С.Штань и В.И.Синицына. М.: Атомиздат, 1960.

4. Зингер С.Ф. «Действие пыли и радиации на космические корабли в межпланетном пространстве». В кн.: Радиационная опасность при космических полетах. М.: МИР, 1964, стр.195.

Похожие патенты RU2431211C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОТОПОВ ТЕРБИЙ-154 И ТЕРБИЙ-155 2022
  • Алиев Рамиз Автандилович
  • Загрядский Владимир Анатольевич
  • Коневега Андрей Леонидович
  • Моисеева Анжелика Николаевна
  • Скобелин Иван Игоревич
RU2793294C1
СПОСОБ ГЕНЕРАЦИИ МЕДИЦИНСКИХ РАДИОИЗОТОПОВ 2012
  • Джилавян Леонид Завенович
  • Карев Александр Иванович
  • Раевский Валерий Георгиевич
RU2500429C2
СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОТОПА I-123 2021
  • Артюхов Алексей Александрович
  • Загрядский Владимир Анатольевич
  • Кравец Яков Максимович
  • Латушкин Сергей Терентьевич
  • Маламут Татьяна Юрьевна
  • Меньшиков Петр Леонидович
  • Новиков Владимир Ильич
  • Унежев Виталий Нургалиевич
RU2756917C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА СТРОНЦИЯ-82 2015
  • Пантелеев Владимир Николаевич
RU2598089C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОТОПА ТЕРБИЙ-149 2015
  • Загрядский Владимир Анатольевич
  • Унежев Виталий Нургалиевич
  • Чувилин Дмитрий Юрьевич
  • Латушкин Сергей Терентьевич
  • Новиков Владимир Ильич
  • Оглоблин Алексей Алексеевич
RU2600324C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА БЕЗ НОСИТЕЛЯ 1992
  • Алексеев И.Е.
  • Бондаревский С.И.
  • Еремин В.В.
RU2102809C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА БЕЗ НОСИТЕЛЯ 1992
  • Алексеев И.Е.
  • Бондаревский С.И.
  • Еремин В.В.
RU2102810C1
СПОСОБ ВЫДЕЛЕНИЯ ИЗ МЕТАЛЛОВ РАДИОАКТИВНЫХ ИЗОТОПОВ, ОБРАЗОВАВШИХСЯ В РЕЗУЛЬТАТЕ ЯДЕРНОГО ПРЕВРАЩЕНИЯ 1992
  • Алексеев И.Е.
  • Бондаревский С.И.
  • Еремин В.В.
RU2102125C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОАКТИВНЫХ ИЗОТОПОВ КОБАЛЬТ-57 И КАДМИЙ-109 2003
  • Кирсанов Ю.Б.
  • Краснов Н.Н.
  • Коняхин Н.А.
  • Мамонов А.Н.
  • Разбаш А.А.
  • Севастьянов Ю.Г.
  • Миронов В.Н.
RU2239900C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОТОПА I-123 2023
  • Кузнецова Татьяна Михайловна
  • Загрядский Владимир Анатольевич
  • Скобелин Иван Игоревич
  • Артюхов Алексей Александрович
  • Маламут Татьяна Юрьевна
  • Новиков Владимир Ильич
  • Кравец Яков Максимович
  • Рыжков Александр Васильевич
  • Удалова Татьяна Андреевна
RU2822685C1

Реферат патента 2011 года СПОСОБ ПОЛУЧЕНИЯ ЕВРОПИЯ-155 ДЛЯ ГАММА-ДЕФЕКТОСКОПИИ

Изобретение относится к ядерной физики, а точнее к производству изотопов для использования в качестве источника гамма-излучения в дефектоскопах при анализе материалов без их разрушения. Способ получения радиоизотопа европий-155 для использования в гамма-дефектоскопии при облучении ионизирующим излучением мишени с самарием-154. Облучение мишени проводят протонным пучком циклотрона. Изобретение направлено на повышение производительности и снижение материальных затрат за счет увеличения срока перезарядка гамма-дефектоскопа, а также позволяет накопить на мишени европий-155 в количестве, достаточном для получения источника излучения гамма-дефектоскопов.

Формула изобретения RU 2 431 211 C1

Способ получения радиоизотопа европий-155 для использования в гамма-дефектоскопии при облучении ионизирующим излучением мишени с самарием-154, отличающийся тем, что облучение мишени проводят протонным пучком циклотрона.

Документы, цитированные в отчете о поиске Патент 2011 года RU2431211C1

Перевод с английского ШТАНЬ А.С., СИНИЦЫНА В.И
Промышленная радиография
- М.: Атомиздат, 1960, с.31-37
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА ТОРИЙ-229 - СТАРТОВОГО МАТЕРИАЛА ДЛЯ ПРОИЗВОДСТВА ТЕРАПЕВТИЧЕСКОГО ПРЕПАРАТА НА ОСНОВЕ РАДИОНУКЛИДА ВИСМУТ-213 2001
  • Чувилин Д.Ю.
  • Ильин Е.К.
  • Марковский Д.В.
RU2210125C2
СПОСОБ ВЫДЕЛЕНИЯ ИЗ МЕТАЛЛОВ РАДИОАКТИВНЫХ ИЗОТОПОВ, ОБРАЗОВАВШИХСЯ В РЕЗУЛЬТАТЕ ЯДЕРНОГО ПРЕВРАЩЕНИЯ 1992
  • Алексеев И.Е.
  • Бондаревский С.И.
  • Еремин В.В.
RU2102125C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОСТРОНЦИЯ 1996
  • Жуйков Борис Леонидович[Ru]
  • Коханюк Владимир Михайлович[Ru]
  • Джон Винсент[Us]
RU2102808C1
Устройство для умножения в системе остаточных классов 1980
  • Белова Раиса Семеновна
  • Евстигнеев Владимир Гаврилович
  • Новожилов Александр Сергеевич
  • Сведе-Швец Валерий Николаевич
SU962942A1

RU 2 431 211 C1

Авторы

Кузнецов Владимир Григорьевич

Даты

2011-10-10Публикация

2010-07-02Подача