ГЕРМЕТИЗИРУЮЩАЯ КОМПОЗИЦИЯ, СОДЕРЖАЩАЯ НЕОРГАНИЧЕСКО-ОРГАНИЧЕСКИЙ НАНОКОМПОЗИТНЫЙ НАПОЛНИТЕЛЬ Российский патент 2011 года по МПК C09K3/10 C08L83/04 

Описание патента на изобретение RU2434036C2

Область техники, к которой относится изобретение

Настоящее изобретение относится к композиции, отверждаемой при комнатной температуре, которая, будучи отвержденной, обладает низкой проницаемостью для газа(ов).

Уровень техники изобретения

Хорошо известно использование композиций, отверждаемых при комнатной температуре (RTC), в качестве герметизирующих составов. Например, при производстве стеклопакетов (IGU), стеклянные панели располагаются параллельно друг другу и герметизируются по периметру таким образом, чтобы пространство между панелями или внутреннее пространство было полностью замкнуто. Обычно, внутреннее пространство заполняется газом или смесью газов с низкой теплопроводностью, например аргоном. Используемые силиконовые герметизирующие композиции, отверждаемые при комнатной температуре, которые эффективны в некоторой степени, имеют лишь ограниченную способность препятствовать потере теплоизоляционного газа из внутреннего пространства IGU. Со временем газ будет уходить, уменьшая теплоизоляционную эффективность IGU до предела.

Добавление глинистых веществ к полимерам известно в области техники, однако включение глин в полимеры может и не привести к желаемому улучшению физических свойств, в частности механических свойств, полимера. Например, это может быть связано с низким сродством глины и полимера на поверхности контакта или на границе глины и полимера внутри вещества. Сродство между глиной и полимером может улучшить физические свойства полученного нанокомпозита, позволяя веществу глины равномерно диспергироваться в полимере. Относительно большая поверхность глины, при равномерном распределении, может давать больше поверхности контакта между глиной и полимером и, следовательно, может улучшать физические свойства, уменьшая подвижность полимерных цепей при данных поверхностях контакта. С другой стороны, низкое сродство между глиной и полимером может отрицательно влиять на прочность и однородность композиции, так как будут иметь место области концентрации глины, а не однородное распределение в полимере. Сродство между глинами и полимерами связано с тем фактом, что глины, по своей природе, в основном являются гидрофильными, тогда как полимеры - в основном гидрофобные.

Следовательно, существует необходимость в RTC-композициях с уменьшенной проницаемостью для газа по сравнению с известными RTC-композициями. При использовании в качестве герметика для IGU, RTC-композиция с уменьшенной проницаемостью для газа будет сохранять межпанельный изоляционный газ на больший период времени по сравнению с более проницаемыми RTC-композициями, и, следовательно, IGU будет проявлять изоляционные свойства в течение большего периода времени.

Сущность изобретения

Настоящее изобретение основано на том открытии, что отверждаемый диорганополисилоксан, оканчивающийся силанольной группой, в комбинации с наполнителем некоторого типа, при отверждении проявляет пониженную проницаемость для газа. Композиция особенно пригодна для применения в качестве герметика, где такими важными рабочими характеристиками являются высокие свойства газоизоляции, наряду с требуемыми характеристиками мягкости, обрабатываемости и эластичности.

Согласно настоящему изобретению, предлагается отверждаемая композиция, содержащая:

а) по меньшей мере, один диорганополисилоксан, заканчивающийся силанольной группой;

b) по меньшей мере, один сшивающий агент для диорганополисилоксана(ов), заканчивающегося силанольной группой;

с) по меньшей мере, один катализатор для реакции поперечного сшивания;

d) по меньшей мере, один неорганическо-органический (т.е. состоящий как из неорганических, так и органических веществ) нанокомпозит в количестве, улучшающем газоизоляцию; и, возможно,

е) по меньшей мере, один твердый полимер, имеющий меньшую проницаемость для газа по сравнению с проницаемостью поперечно-сшитого диорганополисилоксана(ов).

При использовании в качестве газоизоляции, например при производстве IGU, вышеуказанная композиция уменьшает потери газа(ов), таким образом обеспечивая большее время работы изделия, в котором она применяется.

Краткое описание чертежей

Фиг.1 является графическим представлением данных по проницаемости для герметизирующих композиций сравнительного Примера 1 и Примеров 1 и 2.

Фиг.2 является графическим представлением данных по проницаемости для герметизирующих композиций сравнительного Примера 2 и Примера 3.

Фиг.3 является графическим представлением данных по проницаемости для герметизирующих композиций сравнительного Примера 3 и Примеров 4 и 5.

Подробное описание изобретения

Отверждаемая герметизирующая композиция настоящего изобретения образуется посредством смешения а) по меньшей мере, одного диорганополисилоксана, заканчивающегося силанольной группой; b) по меньшей мере, одного сшивающего агента для диорганополисилоксана(ов), заканчивающегося силанольной группой; с) по меньшей мере, одного катализатора для реакции поперечного сшивания; d) по меньшей мере, одного неорганическо-органического нанокомпозита в количестве, улучшающем газоизоляцию; и, возможно, е) по меньшей мере, одного твердого полимера, имеющего меньшую проницаемость для газа по сравнению с проницаемостью поперечно-сшитого диорганополисилоксана(ов), причем, после отверждения композиция проявляет низкую проницаемость для газа(ов).

Композиции изобретения являются пригодными при производстве герметизирующих составов, покрытий, клеящих материалов, уплотнителей и т.п. и особенно пригодны для использования в качестве герметизирующих составов для изоляции стеклопакетов.

При описании изобретения, следующие термины имеют следующие значения, если не указано иначе.

Определения

Используемый здесь термин «расслоение» относится к процессу, где слои пластинок наноглины отделяются друг от друга в полимерной матрице. Во время расслоения внешние пластинки каждого слоя отщепляются, открывая для воздействия следующие пластинки.

Используемый здесь термин «канал» означает пространство между параллельными слоями пластинок глины. Пространство канала изменяется в зависимости от природы молекулы или полимера, занимающего пространство. Внутреннее пространство между индивидуальными пластинками наноглины также изменяется в зависимости от типа молекул, которые занимают пространство.

Используемый здесь термин «интеркалянт» включает любое неорганическое или органическое соединение, способное входить в канал глины и связываться с ее поверхностью.

Используемый здесь термин «интеркалят» относится к комплексу глина-химическое вещество, где пространство канала глины увеличивается за счет процесса модификации поверхности. При определенных условиях температуры и деформации интеркалят способен отслаиваться в матрице смолы.

Используемый здесь термин «интеркаляция» относится к процессу образования интеркалята.

Используемое здесь выражение «неорганическая наночастица» означает слоистый неорганический материал, например глину, с одним или более измерениями, такими как длина, ширина или толщина в нанометровом диапазоне размеров, и который способен подвергаться ионному обмену.

Выражение «низкая проницаемость для газа(ов)», применяемое к отвержденной композиции настоящего изобретения, следует понимать так, что коэффициент проницаемости аргона составляет не более чем 900 баррер (1 баррер = 10-10 (стандартная температура и давление)/см сек (см Hg)), измеренных в соответствии со способом постоянного давления и изменяемого объема при давлении 100 psi и температуре 25°С.

Используемое здесь выражение «модифицированная глина» означает вещество глины, например наноглину, которая была обработана неорганическим или органическим соединением, которое способно подвергаться реакциям ионного обмена с катионами, присутствующими на внутренней поверхности слоя глины.

Используемый здесь термин «наноглина» относится к веществам глины, которые обладают уникальной морфологией с одним измерением нанометрового диапазона. Наноглины могут образовывать химические комплексы с интеркалянтами, которые связаны ионными связями с поверхностями между слоями, образуя частицы глины. Ассоциация интеркалянта и частиц глины приводит к веществу, которое совместимо со множеством различных типов смол хозяина, позволяющих диспергироваться в них глиняному наполнителю.

Используемый здесь термин «наночастица» относится к размеру частиц, в основном определяемым диаметром, менее чем около 1000 нм.

Используемый здесь термин «пластинки» относится к индивидуальным слоям слоистого вещества.

Отверждаемая композиция настоящего изобретения включает, по меньшей мере, один диорганополисилоксан, заканчивающийся силанольной группой (а). Подходящие диорганополисилоксаны, заканчивающийся силанольной группой (а) включают таковые, имеющие общую формулу:

MaDbD'c

где «а» равно 2, и «b» равно или больше 1, а «с» является нулем или положительным числом; М представляет собой (HO)3-x-yR1xR2ySiO1/2,

где «х» имеет значение 0, 1 или 2 и «у» является либо 0, либо 1, при условии ограничения, что х+у меньше или равно 2, R1 и R2, каждый независимо, являются одновалентной углеводородной группой, содержащей вплоть до 60 атомов углерода; D является

R3R4SiO2/2,

где R3 и R4, каждый независимо, являются одновалентной углеводородной группой, имеющей до 60 атомов углерода; и D' является

R5R6SiO2/2,

где R5 и R6, каждый независимо, является углеводородной группой, имеющей до 60 атомов углерода.

Подходящие сшивающие агенты (b) для диорганополисилоксана(ов), заканчивающегося силанольной группой, присутствующие в композиции изобретения, включают алкилсиликаты общей формулы:

(R14O) (R15O)(R16O) (R17O)Si,

где R14, R15, R16 и R17, каждый независимо, являются одновалентной углеводородной группой, имеющей до 60 атомов углерода. Сшивающие агенты данного типа включают н-пропилсиликат, тетраэтилортосиликат и метилтриметоксисилан и аналогичные алкил-замещенные алкоксисилановые соединения и т.п.

Подходящими катализаторами (с) для реакции поперечного сшивания для диорганополисилоксана(ов), заканчивающегося силанольной группой, могут быть любые вещества, для которых известно, что они пригодны для ускорения реакции поперечного сшивания данных силоксанов. Катализатор может быть металл-содержащим или неметаллическим соединением. Примеры пригодных металл-содержащих соединений включают, такие как олово, титан, цирконий, свинец, железо, кобальт, сурьма, марганец, висмут и цинк.

В одном варианте настоящего изобретения оловосодержащие соединения, пригодные в качестве катализаторов реакции поперечного сшивания, включают: дибутилооловодилаурат, дибутилоловодиацетат, дибутилоловодиметоксид, октоат олова, изобутилоловотрицероат, оксид дибутилолова, растворимый оксид дибутилолова, бис-диизооктилфталат дибутилолова, бис-трипропоксисилилдиоктилолово, дибутилолово бис-ацетилацетон, силилированный диоксид дибутилолова, карбометоксифенилолово трис-уберат, изобутилоловотрицероат, диметилоловодибутират, диметилоловодинеодеканоат, триэтилоловотартрат, дибутилоловодибензоат, олеат олова, нафтенат олова, бутилоловотри-2-этилгексилгексоат, бутират олова, диорганоолово бис-β-дикетонаты и т.п. Пригодные титансодержащие катализаторы включают: хелатированные титановые соединения, например, 1,3-пропандиоксититан бис(этилацетоацетат), диизопропоксититан бис(этилацетоацетат) и тетраалкилтитаны, например, тетра-н-бутилтитан и тетраизопропилтитан. В другом варианте настоящего изобретения для ускорения реакции поперечного сшивания силиконовой герметизирующей композиции используются диорганоолово-бис-β-дикетонаты.

Неорганическо-органическая нанокомпозиция (d) настоящего изобретения содержит, по меньшей мере, один неорганический компонент, который покрывает неорганическую частицу и, по меньшей мере, один органический компонент, который является четвертичным аммониевым органополисилоксаном.

Неорганическая наночастица настоящего изобретения может быть природной или синтетической, как например, смектит, и должна иметь некоторые ионообменные свойства, как в смектитных глинах, ректорите, вермикулите, иллите, миканите и их синтетических аналогах, включая лапонит, синтетический миканит-монтмориллонит и тетракремниевый миканит.

В первом варианте наночастицы могут обладать средним максимальным поперечным размером (ширина) между примерно 0,01 мкм и примерно 10 мкм, во втором варианте, между примерно 0,05 мкм и примерно 2 мкм, и в третьем варианте, между примерно 0,1 мкм и примерно 1 мкм. Средний максимальный вертикальный размер (толщина) наночастиц в основном может варьироваться в первом варианте примерно от 0,5 нм до примерно 10 нм, и во втором варианте, примерно от 1 нм до примерно 5 нм.

Пригодные неорганические вещества наночастиц согласно изобретению включают природные или синтетические филлосиликаты, в частности смектитные глины, такие как монтмориллонит, монтмориллонит натрия, монтмориллонит кальция, монтмориллонит магния, нонтронит, бейделлит, волконскоит, лапонит, гекторит, сапонит, сауконит, магадит, кеньяит, собоскит, свиндордит, стивенсит, тальк, слюда, каолинит, вермикулит, галлуазит, оксиды алюминатов или гидротальциты, слюдистые вещества, такие как иллит и смешанные слоистые иллит/смектитные минералы, такие как ректорит, тарасовит, ледикит и смеси иллитов с одним или несколькими глинистыми минералами, указанными выше. При получении неорганическо-органического нанокомпозита по изобретению может быть использован любой набухающий слоистый материал, который в значительной степени сорбирует органические молекулы с увеличением внутреннего пространства слоев между прилегающими пластинками, по меньшей мере, примерно до 5 ангстрем или, по меньшей мере, до примерно 10 ангстрем (при измерении сухого филлосиликата).

Модифицированные неорганические наночастицы по изобретению образуются посредством контакта количеств слоистых неорганических частиц, обладающих обмениваемым катионом, например, Na+, Ca2+, Al3+, Fe2+, Fe3+ и Mg2+ с, по меньшей мере, одним аммонийсодержащим органополисилоксаном. Полученная модифицированная частица является неорганическо-органическим нанокомпозитом (d), обладающая интеркалированными органополисилоксановыми аммониевыми ионами.

Аммонийсодержащий органополисилоксан должен содержать, по меньшей мере, одну аммонийную группу и может содержать две или более аммониевых групп. Четвертичные аммониевые группы могут находиться в конечных позициях органополисилоксана и/или в цепи силоксана. Один класс пригодного аммонийсодержащего органополисилоксана имеет общую формулу:

MaDbD'c,

где «а» равняется 2, и «b» равно или больше 1, а «с» равно нулю или положительному числу; М является [R3zNR4]3-x-yR1xR2ySiO1/2,

где «х» имеет значение 0, 1 или 2 и «у» имеет значение либо 0, либо 1, при ограничивающем условии, что х+у меньше или равно 2, «z» равно 2, R1 и R2, каждый независимо, являются одновалентной углеводородной группой, имеющей до 60 атомов углерода; R3 выбран из группы, состоящей из Н и одновалентной углеводородной группы, имеющей до 60 атомов углерода; R4 является одновалентной углеводородной группой, имеющей до 60 атомов углерода; D представляет собой

R5R6SiO2/2,

где R5 и R6, каждый независимо, являются одновалентной углеводородной группой, имеющей до 60 атомов углерода; D' является

R7R8SiO2/2,

где R7 и R8, каждый независимо, являются одновалентной углеводородной группой, содержащей амин общей формулы:

[R9aNR10],

где «а» имеет значение 2, R9 выбран из группы, состоящей из Н и одновалентной углеводородной группы, имеющей до 60 атомов углерода; R10 является одновалентной углеводородной группой, содержащей до 60 атомов углерода.

В другом варианте настоящего изобретения, аммонийсодержащим органополисилоксаном является R11R12R13N, где R11, R12 и R13, каждый независимо, являются алкоксисиланом или одновалентной углеводородной группой, имеющей до 60 атомов углерода.

Общей формулой алкоксисилана является

[R14O]3-x-yR15xR16ySiR17,

где «х» имеет значение 0, 1 или 2 и «y» имеет значение либо 0, либо 1, при условии ограничения, что х + y меньше или равно 2; R14 является одновалентной углеводородной группой, имеющей до 30 атомов углерода; R15 и R16 независимо выбранные одновалентные углеводородные группы, имеющей до 60 атомов углерода; R17 является одновалентной углеводородной группой, имеющей до 60 атомов углерода. Дополнительными соединениями, пригодными для модификации неорганического компонента настоящего изобретения, являются аминосоединения или соответствующие аммониевые ионы со структурой R18R19R20N, где R18, R19 и R20, каждый независимо, являются алкильной или алкенильной группой, имеющей до 30 атомов углерода, и в другом варианте, каждый независимо, являются алкильной или алкенильной группой, имеющей до 20 атомов углерода, которые могут различаться или быть одинаковыми. В еще одном варианте, органической молекулой является длинноцепочечный третичный амин, где R18, R19 и R20, каждый независимо, являются алкильной или алкенильной группой, имеющей от 14 до 20 атомов углерода.

Нет необходимости переводить слоистые неорганические композиции в форме наночастиц настоящего изобретения в протон-обменную форму. Обычно интеркаляция аммонийного иона органополисилоксана в слоистое неорганическое вещество в форме наночастиц достигается посредством катионного обмена с использованием процессов с растворителем и без растворителя. В процессах, основанных на использовании растворителя, аммониевый органополисилоксановый компонент находится в растворителе, который инертен к реакциям полимеризации или сочетания. Особенно подходящими растворителями являются вода или вода-этанол, вода-ацетон и другие водные системы с полярными сорастворителями. При удалении растворителя образуется концентрат интеркалированных частиц. В случае процесса без растворителя для проведения реакции интеркалирования обычно необходим смеситель с большим сдвиговым усилием. Неорганическо-органический нанокомпозит может быть в форме суспензии, геля, пасты или твердого вещества.

Особый класс аммонийсодержащих органополисилоксанов описан в патенте США № 5130396, который целиком включен здесь в виде ссылки и может быть получен из известных веществ, включая такие, которые являются коммерчески доступными.

Аммонийсодержащие органополисилоксаны патента США № 5130396 представлены общей формулой:

где R1 и R2 являются одинаковыми или разными, и представляют группу формулы:

где атомы азота в (I) присоединены к атомам кремния в (II) через группы R5, и R5 представляет алкиленовую группу с количеством атомов углерода от 1 до 10, циклоалкиленовую группу с количеством атомов от 5 до 8 или структурную единицу общей формулы:

где n является числом от 1 до 6 и показывает число метиленовых групп при положении азота, и m является числом от 0 до 6, и свободные валентности атомов кислорода, присоединенные к атому кремния, являются насыщенными за счет атомов кремния других групп формулы (II), как в силикатных каркасах, и/или за счет атомов металлов одного или нескольких поперечно-сшивающих связывающих структур

где М является атомом кремния, титана или циркония, а R' - линейной или разветвленной алкильной группой с количеством атомов углерода от 1 до 5, где отношение атомов кремния в группах формулы (II) к атомам металла в связывающих структурах составляет 1:0, и где R3 равен R1 или R2, или является водородом, линейной или разветвленной алкильной группой с количеством атомов углерода от 1 до 20, циклоалкильной группой с количеством атомов углерода от 5 до 8 или бензильной группой, и R4 является водородом, или линейной или разветвленной алкильной группой с количеством атомов углерода от 1 до 20, или является циклоалкильной, бензильной, алкильной, пропаргильной, хлорэтильной, гидроксиэтильной, или хлорпропильной группой, состоящей из от 5 до 8 атомов углерода, и Х является анионом с валентностью х, имеющей значение от 1 до 3, и выбран из группы галогенида, гипохлорита, сульфата, гидросульфата, нитрита, нитрата, фосфата, дигидрофосфата, гидрофосфата, карбоната, гидрокарбоната, гидроксида, хлората, перхлората, хромата, дихромата, цианида, цианата, роданида, сульфида, гидросульфида, селенида, теллурида, бората, метабората, азида, тетрафторбората, тетрафенилбората, гексафторфосфата, формиата, ацетата, пропионата, оксалата, трифторацетата, трихлорацетата или бензоата.

Описанные здесь аммонийсодержащие органополисилоксановые соединения являются макроскопическими частицами сферической формы с диаметром от 0,01 до 3,0 мм, удельной поверхностью от 0 до 1000 м2/г, удельным объемом пор от 0 до 5,0 мл/г, насыпной плотностью от 50 до 1000 г/л, а также с отношением массы к объему от 50 до 750 г/л в расчете на сухое вещество.

Один из способов получения аммонийсодержащего органополисилоксана включает реакцию первичного, вторичного или третичного аминосилана, обладающего, по меньшей мере, одной гидролизуемой алкоксильной группой, с водой, возможно, в присутствии катализатора, для достижения гидролиза и последующей конденсации силана и получения органополисилана, заканчивающегося аминогруппой, который далее кватернизуется подходящим кватернизующим реагентом, таким как минеральная кислота и/или алкилгалогенид, с образованием аммонийсодержащего органополисилоксана. Способ данного типа описан в вышеупомянутом патенте США № 5130396. В этой связи, патент США № 6730766, содержимое которого включено сюда для сведения, описывает процесс производства кватернизированных полисилоксанов по реакции полисилоксанов, функционализирован эпоксигруппой.

В вариации данного способа первичные, вторичные или третичные аминосиланы, обладающие гидролизуемой алкоксильной группой(-ами), кватернизируют до реакций гидролиза и конденсации, давая органополисилоксан. Например, аммонийсодержащий N-триметоксисилилпропил-N,N,N-триметиламмонийхлорид, N-триметоксисилилпропил-N,N,N-три-н-бутиламмонийхлорид и коммерчески доступный аммонийсодержащий триалкоксисилан октадецилдиметил(3-триметоксисилилпропил)аммонийхлорид (доступен от Gelest, Inc.) после гидролиза/конденсации даст аммонийсодержащий органополисилоксан для описанного здесь применения.

Другие третичные аминосиланы, пригодные при получении аммонийсодержащего органополисилоксана, включают трис(триэтоксисилилпропил)амин, трис(триметоксисилилпропил)амин, трис(метилдииэтоксисилилпропил)амин, трис(трипропоксисилилпропил)амин, трис(диметилэтоксисилилпропил)амин,

трис(триэтоксифенилсилилпропил)амин и т.п.

Предусмотрен еще один способ кватернизации первичного, вторичного или третичного аминосодержащего органополисилоксана кватернизирующим реагентом для получения аммонийсодержащего органополисилоксана. Пригодные аминосодержащие органополисилоксаны включают соединения с общей формулой:

где R1, R2, R6 и R7, каждый независимо, являются Н, гидрокарбилом, имеющим до 30 атомов углерода, например, алкилом, циклоалкилом, арилом, алкарилом, аралкилом и т.п., или R1 и R2 вместе, или R6 и R7 вместе образуют двухвалентную мостиковую группу, имеющую до 12 атомов углерода, R3 и R5, каждый независимо, являются двухвалетной углеводородной мостиковой группой, содержащей до 30 атомов углерода, возможно, содержащей один или несколько атомов кислорода и/или азота в цепи, например, линейной или разветвленной алкиленовой цепи, содержащей от 1 до 8 углеродов, такой как -СН2-, -СН2СН2-, -СН2СН2СН2-, -СН2-С(СН3)-СН2-, -СН2СН2СН2СН2- и т.д., каждый R4 независимо является алкильной группой, и n является числом от 1 до 20 и преимущественно от 6 до 12.

Данные и аналогичные аминосодержащие органополисилоксаны могут быть получены посредством известных и традиционных процедур, например, по реакции олифинового амина, такого как аллиламин с полидиорганополисилоксаном, имеющий связи Si-H, в присутствии катализатора гидросилилирования, такого как платиносодержащий катализатор гидросилилирования, описанный в патенте США № 5026890, содержимое которого упомянуто здесь для сведения.

Конкретные аминосодержащие органополисилоксаны, которые являются пригодными для получения аммонийсодержащих органополисилоксанов, включают коммерческую смесь

и

Необязательно, отверждаемая композиция изобретения также может содержать, по меньшей мере, один твердый полимер (е), имеющий меньшую проницаемость для газа по сравнению с проницаемостью поперечно-сшитого диорганополисилоксана. Подходящие полимеры включают полиэтилены, такие как полиэтилен низкой плотности (LDPE), полиэтилен очень низкой плотности (VLDPE), линейный полиэтилен низкой плотности (LLDPE) и полиэтилен высокой плотности (HDPE); полипропилен (РР), полиизобутилен (PIB), поливинилацетат (PVAc), поливиниловый спирт (PVoH), полистирол, поликарбонат, полиэфир, такой как полиэтилентерефталат (РЕТ), полибутилентерефталат (РВТ), полиэтиленнафталат (PEN), полиэтилентерефталат, модифицированный гликолем (PETG); поливинилхлорид (PVC), поливинилиденхлорид, поливинилиденфторид, термопластичный полиуретан (TPU), акрилонитрил-бутадиен-стирол (ABS), полиметилметакрилат (РММА), поливинилфторид (PVF), полиамиды (нейлоны), полиметилпентен, полиимид (PI), полиэфиримид (PEI), полиэфиркетон (РЕЕК), полисульфон, полиэфирсульфон, этиленхлоротрифтороэтилен, политетрафторэтилен (PTFE), ацетат целлюлозы, ацетат бутират целлюлозы, пластифицированный поливинилхлорид, иономеры (Surtyn), полифениленсульфид (PPS), стирол-малеиновый ангидрид, модифицированный полифениленоксид (РРО) и т.п., и их смеси.

Необязательно, полимер(ы) также могут быть эластомерами по природе, примеры включают, но не ограничиваются ими, этиленпропиленовый каучук (EPDM), полибутадиен, полихлоропрен, полиизопрен, полиуретан, (TPU), блок-сополимер стирола и бутадиена с чередованием блоков (SBS), блок-сополимер стирола-этилена-бутадиена-стирола (SEEBS), полиметилфенилсилоксан (PMPS) и т.п.

Данные возможные полимеры могут быть смешаны как сами по себе, так и в комбинациях или в форме сополимеров, например смеси поликарбонат-ABC, поликарбонатполиэфирные смеси, привитые полимеры, такие как привитые силановые полиэтилены и привитые силановые полиуретаны.

В одном варианте настоящего изобретения отверждаемая композиция содержит полимер, выбранный из группы, состоящей из полиэтилена низкой плотности (LDPE), полиэтилена очень низкой плотности (VLDPE), линейного полиэтилена низкой плотности (LLDPE), полиэтилена высокой плотности (HDPE) и их смеси. В другом варианте изобретения отверждаемая композиция содержит полимер, выбранный из группы, состоящей из полиэтилена низкой плотности (LDPE), полиэтилена очень низкой плотности (VLDPE), линейного полиэтила низкой плотности (LLDPE) и их смеси. В еще одном варианте настоящего изобретения, возможно, полимером является линейный полиэтилен низкой плотности (LLDPE).

Вдобавок к компоненту неорганическо-органического нанокомпозита (d) отверждаемая герметизирующая композиция может содержать один или несколько других наполнителей. Подходящие дополнительные наполнители для использования в данном изобретении включают осажденные и коллоидные карбонаты кальция, которые были обработаны такими соединениями, как стеариновая кислота или сложный эфир стеариновой кислоты, активированные оксиды кремния, такие как коллоидальные оксиды кремния, осажденные оксиды кремния, силикагели и гидрофобные оксиды кремния и силикагели; дробленый кварц и кварцевая мука, окись алюминия, гидроксид алюминия, гидроксид титана, диатомитовая земля, оксид железа, сажа, графит, слюда, тальк и т.п., и их смесью.

Отверждаемая герметизирующая композиция настоящего изобретения также может включать один или несколько алкоксисиланов в качестве промоторов адгезии. Пригодные промоторы адгезии включают N-2-аминоэтил-3-аминопропилтриэтоксисилан, γ-аминопропилтриэтоксисилан, γ-аминопропилтриметоксисилан, аминопропилтриметоксисилан, бис-(γ-триметоксисилилпропил)амин, N-фенил-γ-аминопропилтриметоксисилан, триаминофункционализированный триметоксисилан, γ-аминопропилметилдиэтоксисилан, γ-аминопропилметилдиэтоксисилан, метакрилоксипропилтриметоксисилан, метиламинопропилтриметоксисилан, γ-глицидоксипропилэтилдиметоксисилан, γ-глицидоксипропилтриметоксисилан, γ-глицидоксиэтилтриметоксисилан, β-(3,4-эпоксициклогексил)пропилтриметоксисилан, β-(3,4-эпоксициклогексил)этилметилдиметоксисилан, изоцианатопропилтриэтоксисилан, изоцианатопропилметилдиметоксисилан, β-цианоэтилтриметоксисилан, γ-акрилоксипропилтриметоксисилан, γ-метакрилоксипропилметилдиметоксисилан, 4-амино-3,3-диметилбутилтриметоксисилан и N-этил-3-триметоксисилил-2-метилпропанамин и т.п. В одном варианте промотором адгезии может быть комбинация н-2-аминоэтил-3-аминопропилтриметоксисилана и 1,3,5-трис(триметоксисилилпропил)изоцианурата.

Композиции настоящего изобретения также могут включать один или несколько неионогенных поверхностно-активных веществ, таких как полиэтиленгликоль, полипропиленгликоль, этоксилированное касторовое масло, этоксилат олеиновой кислоты, этоксилаты алкилфенола, сополимеры этиленоксида (ЕО) и пропиленоксида (РО), и сополимеры силиконов (кремнийсодержащих соединений) и простых полиэфиров (сополимеры силикон-полиэфиров), сополимеры кремнийсодержащих соединений и сополимеров этиленоксида и пропиленоксида и их смеси.

Также отверждаемая герметизирующая композиция настоящего изобретения может включать еще и другие компоненты, которые традиционно используют в кремнийсодержащих RTC-композициях, такие как красящие вещества, пигменты, пластификаторы, антиоксиданты, УФ-стабилизаторы, биогезидные агенты и т.п., в известных и обычно применяемых количествах, так, чтобы они не изменяли требуемых свойств отвержденных композиций.

Количества диорганополисилоксана(ов), заканчивающегося силанольной группой, сшивающего агента(ов), катализатора(ов) реакции поперечного сшивания, неорганическо-органического нанокомпозита(ов), возможно, твердого полимера(ов) с меньшей проницаемостью для газа по сравнению со сшитыми диорганополисилаксаном(ами), возможно, наполнителя(ей), отличных от неорганическо-органического нанокомпозита, возможно, промотора(-ов) адгезии и, возможно, ионного поверхностно-активного вещества(-в) могут варьироваться в широких диапазонах и, преимущественно, могут быть выбраны среди диапазонов, указанных в таблице I. Разумеется, отверждаемые композиции настоящего изобретения содержат неорганическо-органический нанокомпозит в количестве, которое улучшает его газобарьерные свойства.

ТАБЛИЦА I
Диапазоны количеств (весовые проценты) компонентов отверждаемой композиции изобретения
Компоненты отверждаемой композиции Первый диапазон Второй диапазон Третий диапазон Диорганополисилоксан(ы), оканчивающийся силанольной группой 50-99 70-99 80-85 Сшивающий агент(ы) 0,1-10 0,3-5 0,5-1,5 Катализатор(ы) реакции сшивания 0,001-1 0,003-0,5 0,005-0,2 Неорганическо-органический нанокомпозит(ы) 0,1-50 10-30 15-20 Твердый полимер(ы) с меньшей проницаемостью для газа по сравнению со сшитым диорганополисилоксаном(амии) с поперечными связями 0-50 5-40 10-35 Наполнитель(и), отличный от неорганическо-органического нанокомпозита 0-90 5-60 10-40 Промотор(ы) адгезии силана 0-20 0,1-10 0,5-2 Ионное поверхностно-активное вещество(а) 0-10 0,1-5 0,5-0,75

Отверждаемая композиция настоящего изобретения может быть получена с помощью известных в области технике процедур, например смешением расплавов, экструзионным смешиванием, смешиванием растворов, сухим смешиванием, смешением в смесителе Бенбери и т.п., в присутствии влаги, с образованием по существу гомогенной смеси.

Предпочтительно, могут быть осуществлены способы смешения диорганополисилоксановых полимеров с полимерами посредством контакта компонентов в барабане или посредством других физических способов смешения, с последующим смешиванием расплава в экструдере. С другой стороны, компоненты могут быть расплавлены и смешаны непосредственно в экструдере, в смесителе Бенбери или посредством других способов смешения расплавов.

Изобретение иллюстрируется следующими не ограничивающими примерами.

СРАВНИТЕЛЬНЫЙ ПРИМЕР 1 И ПРИМЕРЫ 1 - 2

Неорганическо-органический нанокомпозит получают посредством помещения 10 г силоксана, заканчивающегося аминопропильной группой (“GAP 10”, длина силоксана 10, от GE Silicones, Waterford, USA), в 100 мл одногорлую круглодонную колбу и добавления 4 мл метанола от Merck. При перемешивании очень медленно добавляют 2,2 мл концентрированной НСl. Перемешивание продолжают в течение 10 минут. В 2000 мл трехгорлую круглодонную колбу, снабженную холодильником и механической мешалкой с верхней подачей, помещают 900 мл воды. При перемешивании (скорость перемешивание примерно 250 об/мин) очень медленно к воде добавляют 18 г глины Closite Na+ (природный монтмориллонит, доступный от Southern Clay Products). Затем приготовленный раствор хлорида аммония (приготовленный выше) очень медленно добавляют к смеси глины с водой. Смесь перемешивают в течение 1 часа и оставляют стоять на ночь. Смесь фильтруют через воронку Бюхнера, и полученное твердое вещество разбавляют 800 мл метанола, перемешивают в течение 20 минут и смесь отфильтровывают. Твердое вещество высушивают в печи при 80°С примерно в течение 50 часов.

Для получения 2,5 весовых процентов нанокомпозита в трехгорлую круглодонную колбу, снабженную холодильником и мешалкой с верхней подачей, вносят 224,25 г OMCTS (октаметилциклотетрасилоксан) и 5,75 г, модифицированной соединением GAP 10 глины (неорганическо-органический нанокомпозит, полученный выше). Смесь перемешивают при 250 об/мин в течение 6 часов при комнатной температуре. Температуру повышают до 175°С при продолжении перемешивания. Через мембрану в реакционный сосуд добавляют 0,3 г CsOH в 1 мл воды. После 15 минут начинается полимеризация OMCTS, и добавляют 0,5 мл воды с дополнительным добавлением 0,5 мл воды спустя 5 минут. Нагревание и перемешивание продолжают в течение 1 часа, после чего, для нейтрализации, добавляют 0,1 мл фосфорной кислоты. рН реакционной смеси определяют спустя 30 минут. Перемешивание и нагревание продолжают еще 30 минут и снова определяют рН реакционной смеси для подтверждения окончания нейтрализации. Дистилляция циклических соединений проводится при 175°С, и затем смесь охлаждают до комнатной температуры.

Аналогичную процедуру проводят с 5 весовыми процентами модифицированной GAP 10 глины.

Процедуру полимеризации in-situ проводят с глинами, модифицированными 2,5 масс.% и 5 масс.% (смотри Таблицу 1) GAP (полученными выше). Затем, для получения отвержденных листов, были использованы следующие in-situ полимеры с различными количествами глины: in-situ полидиметилсилоксаны (PDMS), оканчивающиеся силанольной группой (Silanol 5000 - оканчивающийся силанольной группой полидиметилсилоксан с номинальным значением 5000 cs и Silanol 50000, оканчивающийся силанольной группой полидиметилсилоксан с номинальным значением 50000 cs, оба доступны от Gelest, Inc.), составы модифицированной GAP 10 глины смешивают с NPS (н-пропилсиликатом, доступным от Gelest, Inc.), сшивающим агентом и катализатором - солюбилизированным DBTO (солюбилизированный оксид дибутилолова, доступный от GE silicones, Waterford, USA), используя ручной смеситель в течение 5-7 минут с удалением пузырьков воздуха под вакуумом. Затем смесь выливают в тефлоновую листообразующую форму и выдерживают в течение 24 часов при комнатных условиях (25°С и 50% влажности). Частично отвержденные листы удаляют из формы спустя 24 часа и выдерживают при комнатной температуре в течение семи дней до окончания отверждения.

Таблица 1 Граммы Масс.% NPS Масс.% DBTO Сравнительный Пример 1 50 2 1,2 Пример 1: In-situ силанол с 2,5 масс.% модифицированной глины 50 2 1,2 Пример 2: In-situ силанол с 5 масс.% модифицированной глины 50 2 1,2

Проницаемость аргона измеряли с использованием установки проницаемости газа. Проницаемость аргона измеряется с использованием установки проницаемости газа, как для предыдущих примеров. Измерения основаны на способе с изменением объема при давлении 100 psi и при температуре 25°С. Измерения повторяют при идентичных условиях 2-3 раза, для уверенности в том, что они воспроизводимы.

Данные по проницаемости для Сравнительного Примера 1 и Примеров 1 и 2 представлены графически на Фиг.1.

СРАВНИТЕЛЬНЫЙ ПРИМЕР 2 И ПРИМЕР 3

Пример 3 (смотри Таблицу 2) готовят посредством смешения 45 грамм PDMS и 5 грамм модифицированной GAP 10 глины (полученной выше), и проводят аналогичную процедуру in-situ полимеризации при смешении 2 масс.% NPS и 1,2 масс.% DBTO, используя ручной смеситель в течение 5-7 минут с удалением пузырьков газа под вакуумом. Каждую смесь выливают в тефлоновую листообразующую форму и выдерживают в течение 24 часов при комнатных условиях (25°С и 50% влажности) до частичного отверждения PDMS компонентов. Спустя 24 часа частично отвержденные листы удаляют из формы и выдерживают при комнатной температуре в течение семи дней до окончания отверждения.

Таблица 2 Граммы Масс.% NPS Масс.% DBTO Сравнительный Пример 2: Смесь силанолов 50 2 1,2 Пример 3: In-situ силанол с 5 масс.% модифицированной глины 50 2 1,2

Проницаемость аргона измеряется с использованием установки проницаемости газа как для предыдущих примеров. Измерения основаны на способе с изменением объема при давлении 100 psi и при температуре 25°С. Измерения повторяют при идентичных условиях 2-3 раза для уверенности в том, что они воспроизводимы.

Данные проницаемости для Сравнительного Примера 2 и Примера 3 представлены графически на Фиг.2.

СРАВНИТЕЛЬНЫЙ ПРИМЕР 3 И ПРИМЕРЫ 4 И 5

Неорганическо-органический композит Примеров 4 и 5 получают путем внесения 15 граммов октадецилдиметил(3-триметоксисилилпропил)аммонийхлорида (доступен от Gelest, Inc.) в 100 мл стакан и медленном добавлении 50 мл метанола (доступен от Merck). Очень медленно, к 5 литровому стакану, содержащему раствор вода:метанол (отношение 1:3, 3,5 л), снабженному механической мешалкой с верхней подачей, которая перемешивает смесь при скорости примерно 400 об/минуту, добавляют 30 грамм глины Closite 15А (“C-15A”, монтмориллонитовая глина, модифицированная 125 миллиэквивалентами (диметил-(дегидрогенизированный талловый жир) аммоний)хлорида на 100 г глины, доступной от Southern Clay Products). Перемешивание продолжают в течение 12 часов. Затем очень медленно добавляют октадецилдиметил(3-триметоксисилилпропил))аммонийхлорид (полученный выше). Смесь перемешивают в течение 3 часов. После этого, смесь фильтруют через воронку Бюхнера, и полученное твердое вещество в несколько раз разбавляют раствором вода:метанол (1:3) до следующей фильтрации. Твердое вещество сушат в печи при 80°С в течение примерно 50 часов.

Затем вышеуказанные смеси используют для получения листов, как указано далее: составы модифицированной PDMS-силилпропилом глины смешивают с NPS и DBTO, как указано в Таблице 3, с использованием ручного смесителя в течение 5-7 минут, с удалением пузырьков воздуха под вакуумом. Каждую смесь выливают в тефлоновую листообразующую форму и выдерживают в течение 24 часов при комнатных условиях (25°С и 50% влажности) до частичного отверждения PDMS-компонентов. Спустя 24 часа, частично отвержденные листы удаляют из формы и выдерживают при комнатной температуре в течение семи дней до окончания отверждения.

Таблица 3 Граммы Масс.% NPS Масс.% DBTO Сравнительный Пример 3: Смесь силанолов 50 2 1,2 Пример 4: силанольная смесь с 5 phr модифицированной силилпропилом глины 50 2 1,2 Пример 5: силанольная смесь с 10 phr модифицированной силилпропилом глины 50 2 1,2

Проницаемость аргона измеряется с использованием установки проницаемости газа, как для предыдущих примеров. Измерения основаны на способе с изменением объема при давлении 100 psi и при температуре 25°С. Измерения повторяют при идентичных условиях 2-3 раза для уверенности в том, что они воспроизводимы.

Данные по проницаемости для Сравнительного Примера 3 и Примеров 4 и 5 представлены графически на Фиг.3.

Данные по проницаемости представлены графически на Фиг.1, 2 и 3. Как показывают данные, проницаемость аргона в случае отвержденной герметизирующей композиции изобретения (Примеры 1 и 2 Фиг.1, Примеры 3 Фиг.2 и Примеры 4 и 5 Фиг.3) значительно меньше по сравнению с отвержденными герметизирующими композициями, которые не входят в объем изобретения (Сравнительные Примеры 1-3 Фиг.1-3, соответственно). В целом, тогда как коэффициенты проницаемости аргона герметизирующих композиций Сравнительных примеров 1, 2 и 3 превышают 950 баррер, для Примеров 1-3, 4 и 5, иллюстрирующих герметизирующие композиции настоящего изобретения, коэффициент не превышал 875 баррер, и в некоторых случаях, был сильно ниже данного уровня коэффициента проницаемости аргона (в частности, смотри примеры 2, 4 и 5).

Несмотря на то что были подробно представлены и описаны предпочтительные варианты настоящего изобретения, различные модификации, например компонентов, веществ и параметров, будут очевидны специалисту в данной области техники, и в прилагаемой формуле изобретения необходимо защитить все такие модификации и изменения, которые подпадают под объем настоящего изобретения.

Похожие патенты RU2434036C2

название год авторы номер документа
СТЕКЛОПАКЕТ С ГЕРМЕТИЗИРУЮЩЕЙ КОМПОЗИЦИЕЙ, ИМЕЮЩЕЙ ПОНИЖЕННУЮ ПРОНИЦАЕМОСТЬ ДЛЯ ГАЗОВ 2007
  • Лэндон Шейн Дж.
  • Уилльямс Дэвид А.
  • Кумар Викрам
  • Несакумар Эдвард Дж.
  • Рамакришнан Индуматхи
RU2434905C2
НЕОРГАНИЧЕСКО-ОРГАНИЧЕСКИЙ НАНОКОМПОЗИТ 2007
  • Уилльямс Дэвид А.
  • Кумар Викрам
  • Несакумар Эдвард Дж.
  • Рамакришнан Индуматхи
RU2434893C2
ОТВЕРЖДАЮЩАЯСЯ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ КОМПОЗИЦИЯ ИЗ ПОЛИОРГАНОСИЛОКСАНА 2007
  • Ландон Шейн Дж.
  • Уилльямс Дэвид А.
  • Кумар Викрам
  • Несакумар Эдвард Дж.
  • Рамакришнан Индуматхи
RU2414496C2
ОТВЕРЖДАЕМЫЕ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ КОМПОЗИЦИИ СИЛОКСАНОВЫХ ГЕРМЕТИКОВ С ПОНИЖЕННОЙ ГАЗОПРОНИЦАЕМОСТЬЮ 2006
  • Ландон Шейн Дж.
  • Уилльямс Дэвид А.
  • Кумар Викрам
  • Шелукар Сачин Ашок
  • Несакумар Эдвард Джозеф
  • Рамакришнан Индуматхи
RU2433156C2
МНОГОКОМПОНЕНТНАЯ КОМПОЗИЦИЯ СИЛОКСАНОВОГО КАУЧУКА, ОТВЕРЖДАЮЩАЯСЯ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ 2006
  • Нисиуми Ватару
  • Моримото Хиротоки
RU2407763C2
БЫСТРООТВЕРДЕВАЮЩАЯСЯ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ КОМПОЗИЦИЯ ОРГАНОПОЛИСИЛОКСАНА И СПОСОБ ЕЕ ОТВЕРДЕВАНИЯ 2008
  • Кимура Цунео
  • Сакамото Такафуми
  • Тесигавара Мамору
RU2458089C2
СТЕКЛОПАКЕТ С ИСПОЛЬЗОВАНИЕМ ОТВЕРЖДАЮЩЕЙСЯ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ СИЛОКСАНСОДЕРЖАЩЕЙ КОМПОЗИЦИИ, ИМЕЮЩЕЙ ПОНИЖЕННУЮ ГАЗОПРОНИЦАЕМОСТЬ 2007
  • Ландон Шейн Дж.
  • Уилльямс Дэвид А.
  • Кумар Викрам
  • Несакумар Эдвард Дж.
  • Рамакришнан Индуматхи
RU2433967C2
СОСТОЯЩАЯ ИЗ ДВУХ ЧАСТЕЙ ОТВЕРЖДАЕМАЯ КОМПОЗИЦИЯ И ПОЛУЧЕННАЯ ИЗ НЕЕ ПОЛИУРЕТАН-ПОЛИСИЛОКСАНОВАЯ СМЕСЬ 2006
  • Хуан Мисти
  • Уилльямс Дэвид А.
RU2435794C2
ИЗОЛЯЦИОННЫЙ СТЕКЛОПАКЕТ, ОБЛАДАЮЩИЙ ОТВЕРЖДАЮЩИМСЯ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ ГЕРМЕТИКОМ ПОНИЖЕННОЙ ГАЗОПРОНИЦАЕМОСТИ 2006
  • Лэндон Шейн Дж.
  • Уилльямс Дэвид А.
  • Кумар Викрам
  • Шелукар Сачин А.
  • Несакумар Эдвард Дж.
  • Рамакришнан Индуматхи
RU2448133C2
ОТВЕРЖДАЕМАЯ ОРГАНОПОЛИСИЛОКСАНОВАЯ КОМПОЗИЦИЯ И ПОЛУПРОВОДНИКОВОЕ УСТРОЙСТВО 2009
  • Сагава Такаши
  • Йошитаке Макото
RU2503694C2

Иллюстрации к изобретению RU 2 434 036 C2

Реферат патента 2011 года ГЕРМЕТИЗИРУЮЩАЯ КОМПОЗИЦИЯ, СОДЕРЖАЩАЯ НЕОРГАНИЧЕСКО-ОРГАНИЧЕСКИЙ НАНОКОМПОЗИТНЫЙ НАПОЛНИТЕЛЬ

Изобретение относится к отверждаемой при комнатной температуре композиции, которая пригодна для использования в качестве герметизирующих составов для изоляции стеклопакетов. Отверждаемая герметизирующая композиция содержит а) по меньшей мере один диорганополисилоксан, заканчивающийся силанольной группой, который имеет общую формулу MaDbD'c, где «а» имеет значение 2, и «b» равно или больше 1, а «с» равно нулю или положительному числу; М представляет собой (НО)3-х-yR1xR2ySiO1/2, где «х» имеет значение 0, 1 или 2, а «у» имеет значение либо 0, либо 1, при том ограничивающем условии, что х+у меньше или равно 2, R1 и R2, каждый независимо, являются одновалентной углеводородной группой, имеющей до 60 атомов углерода; D является R3R4SiO2/2, где R3 и R4, каждый независимо, являются одновалентной углеводородной группой, имеющей до 60 атомов углерода; и D' является R5R6SiO2/2, где R5 и R6, каждый независимо, являются одновалентной углеводородной группой, имеющей до 60 атомов углерода, и характеризуется вязкостью от 5000 cs до 50000 cs; b) пo меньшей мере один сшивающий агент для диорганополисилоксана(ов), заканчивающегося силанольной группой, причем указанный поперечно-сшивающий агент является алкилсиликатом, имеющим общую формулу (R14O)(R15O)(R16O)(R17O)Si, где R14, R15, R16 и R17, каждый независимо, выбраны из одновалентных углеводородных радикалов от С1 до С60; с) по меньшей мере один катализатор для реакции поперечного сшивания; d) по меньшей мере один неорганическо-органический нанокомпозит в количестве, улучшающем газобарьерные свойства, где указанный неорганическо-органический нанокомпозит содержит, по меньшей мере, один неорганический компонент, который представляет собой материал из слоистых неорганических наночастиц и, по меньшей мере, один органический компонент, который является четвертичным аммониевым органополисилоксаном; и, необязательно, е) по меньшей мере один твердый полимер, имеющий меньшую проницаемость для газа по сравнению с проницаемостью поперечно-сшитого диорганополисилоксана(ов). Технический результат - отвержденная композиция обладает низкой проницаемостью для газа(ов). 2 н. и 14 з.п. ф-лы, 3 ил., 3 табл.

Формула изобретения RU 2 434 036 C2

1. Отверждаемая герметизирующая композиция, содержащая:
а) по меньшей мере, один диорганополисилоксан, заканчивающийся силанольной группой, который имеет общую формулу:
MaDbD'c,
где а имеет значение 2, и b равно или больше 1, а с равно нулю или положительному числу; М представляет собой
(HO)3-x-yR1xR2ySiO1/2,
где х имеет значение 0, 1 или 2, а у имеет значение либо 0, либо 1, при том ограничивающем условии, что х+у меньше или равно 2, R1 и R2 каждый независимо являются одновалентной углеводородной группой, имеющей до 60 атомов углерода; D является
R3R4SiO2/2,
где R3 и R4 каждый независимо являются одновалентной углеводородной группой, имеющей до 60 атомов углерода; и D' является
R5R6SiO2/2
где R5 и R6 каждый независимо являются одновалентной углеводородной группой, имеющей до 60 атомов углерода, и характеризуется вязкостью от 5000 сСт до 50000 сСт;
b) no меньшей мере, один сшивающий агент для диорганополисилоксана(ов), заканчивающегося силанольной группой, причем указанный поперечно-сшивающий агент является алкилсиликатом, имеющим общую формулу:
(R14O)(R15O)(R16O)(R17O)Si,
где R14, R15, R16 и R17 каждый независимо выбраны из одновалентных углеводородных радикалов от С1 до С60;
c) по меньшей мере, один катализатор для реакции поперечного сшивания;
d) по меньшей мере, один неорганическо-органический нанокомпозит в количестве, улучшающем газобарьерные свойства, где указанный неорганическо-органический нанокомпозит содержит, по меньшей мере, один неорганический компонент, который представляет собой материал из слоистых неорганических наночастиц и, по меньшей мере, один органический компонент, который является четвертичным аммониевым органополисилоксаном;
и, необязательно,
e) по меньшей мере, один твердый полимер, имеющий меньшую проницаемость для газа по сравнению с проницаемостью поперечно-сшитого диорганополисилоксана(ов).

2. Композиция по п.1, где катализатором (с) является содержащий олово катализатор.

3. Композиция по п.2, где содержащий олово катализатор выбран из группы, состоящей из дибутилоловодилаурата, дибутилоловодиацетата, дибутилоловодиметоксида, октоата олова, изобутилолово-трицероата, оксида дибутилолова, дибутилолово-бис-диизооктилфталата, бис-трипропоксисилилдиоктилолова, дибутилолово-бис-ацетилацетона, силилированного диоксида дибутилолова, карбометоксифенилолово-трис-уберата, изобутилоловотрицероата, диметилоловодибутирата, диметилоловодинеодеканоата, триэтилоловотартрата, дибутилоловодибензоата, олеата олова, нафтената олова, бутилоловотри-2-этилгексилгексоата, бутирата олова, диорганоолово-бис-β-дикетонатов и их смесей.

4. Композиция по п.1, где слоистые неорганические наночастицы обладают обмениваемыми катионами, которые представляет собой, по меньшей мере, один член, выбранный из группы Na+, Са2+, Al3+, Fe2+, Fe3+, Mg2+и их смесей.

5. Композиция по п.1, где материал из слоистых наночастиц является, по меньшей мере, один член, выбранный из группы, состоящей из монтмориллонита, монтмориллонита натрия, монтмориллонита кальция, монтмориллонита магния, нонтронита, бейделлита, волконскоита, лапонита, гекторита, сапонита, сауконита, магадита, кеньяита, собоскита, свиндордита, стивенсита, вермикулита, галлуазита, оксидов алюминатов, гидротальцита, иллита, ректорита, тразовита, ледикита, каолинита и их смесей.

6. Композиция по п.1, где четвертичным аммонийным органополисилоксаном является, по меньшей мере, один аммонийсодержащий диорганополисилоксан, имеющий формулу:
MaDbD'с,
где а имеет значение 2, и b равно или больше 1, а с равно нулю или положительному числу; М является
[R3zNR4]3-x-yR1xR2ySiO1/2,
где х имеет значение 0, 1 или 2, и у имеет значение либо 0, либо 1, при том ограничивающем условии, что х+у меньше или равно 2, z равно 2, R1 и R2 каждый независимо являются одновалентной углеводородной группой, имеющей до 60 атомов углерода; R3 выбран из группы, состоящей из Н и одновалентной углеводородной группы, имеющей до 60 атомов углерода; R4 является одновалентной углеводородной группой, имеющей до 60 атомов углерода; D является
R5R6SiO2/2,
где R5 и R6 каждый независимо являются одновалентной углеводородной группой, имеющей до 60 атомов углерода; и D' является
R7R8SiO2/2,
где R7 и R8 каждый независимо являются одновалентной углеводородной группой, содержащей амин общей формулы:
[R9aNR10],
где а имеет значение 2, R9 выбран из группы, состоящей из Н и одновалентной углеводородной группы, имеющей до 60 атомов углерода;
R10 является одновалентной углеводородной группой, имеющей до 60 атомов углерода.

7. Композиция по п.6, где четвертичная аммониевая группа представлена формулой R6R7R8N+X-, где, по меньшей мере, один из R6, R7
и R8 является алкоксисиланом, имеющим до 60 атомов углерода, и оставшиеся группы являются алкильными или алкенильными группами, имеющими до 60 атомов углерода, и Х является анионом.

8. Композиция по п.1, где твердый полимер(ы) выбран из группы, состоящей из полиэтилена низкой плотности, полиэтилена очень низкой плотности, линейного полиэтилена низкой плотности, полиэтилена высокой плотности, полипропилена, полиизобутилена, поливинилацетата, поливинилового спирта, полистирола, поликарбоната, полиэфира, такого как полиэтилентерефталат, полибутилентерефталат, полиэтиленнафталат, полиэтилентерефталат, модифицированный гликолем, поливинилхлорида, поливинилиденхлорида, поливинилиденфторида, термопластичного полиуретана, акрилонитрил-бутадиен-стирола, полиметилметакрилата, поливинилфторида, полиамидов, полиметилпентена, полиимида, простого полиэфиримида, простого полиэфир-эфиркетона, полисульфона, полиэфирсульфона, этиленхлоротрифтороэтилена, политетрафторэтилена, ацетата целлюлозы, ацетат-бутирата целлюлозы, пластифицированного поливинилхлорида, иономеров, полифениленсульфида, стирол-малеинового ангидрида, модифицированного полифениленоксида, этилен-пропиленовых смол, полибутадиена, полихлоропрена, полиизопрена, полиуретана, сополимера стирол-бутадиен-стирола, сополимера стирол-этилен-бутадиен-стирола и их смесей.

9. Композиция по п.1, которая дополнительно содержит, по меньшей мере, один необязательный компонент, выбранный из группы, состоящей из промотора адгезии, поверхностно-активного вещества, красящего вещества, пигмента, пластификатора, наполнителя, отличного от неорганическо-органического нанокомпозита, антиоксиданта, УФ-стабилизатора и биоцида.

10. Композиция по п.9, где промотор адгезии выбран из группы, состоящей из н-2-аминоэтил-3-аминопропилтриметоксисилана, 1,3,5-трис(триметоксисилилпропил)изоцианурата, γ-аминопропилтриэтоксисилана, γ-аминопропилтриметоксисилана, аминопропилтриметоксисилана, бис-(γ-триметоксисилилпропил)амина, N-фенил-γ-аминопропилтриметоксисилана,
триаминофункционализированного триметоксисилана, γ-аминопропилметилдиэтоксисилана, γ-аминопропилметилдиэтоксисилана, метакрилоксипропилтриметоксисилана,
метиламинопропилтриметоксисилана, γ-глицидоксипропилэтилдиметоксисилана, γ-глицидоксипропилтриметоксисилана, γ-глицидоксиэтилтриметоксисилана, β-(3,4-эпоксициклогексил)пропилтриметоксисилана, β-(3,4-эпоксициклогексил)этилметилдиметоксисилана, изоцианатопропилтриэтоксисилана,
изоцианатопропилметилдиметоксисилана, β-цианоэтилтриметоксисилана, γ-акрилоксипропилтриметоксисилана, γ-метакрилоксипропилметилдиметоксисилана, 4-амино-3,3 -диметилбутилтриметоксисилана, н-этил-3-триметоксисилил-2-метилпропанамина и их смесей.

11. Композиция по п.9, где поверхностно-активное вещество является неионогенным поверхностно-активным веществом, выбранным из группы, состоящей из полиэтиленгликоля, полипропиленгликоля, этоксилированного касторового масла, этоксилата олеиновой кислоты, этоксилата алкилфенола, сополимеров этиленоксида и пропиленоксида, сополимеров силиконов и простых полиэфиров, сополимеров силиконов и сополимеров этиленоксида и пропиленоксида и их смесей.

12. Композиция по п.11, где неионогенное поверхностно-активное вещество выбрано из группы, состоящей из сополимеров этиленоксида и пропиленоксида, сополимеров силиконов и простых полиэфиров, сополимеров, кремнийсодержащих соединений и сополимеров этиленоксида и пропиленоксида и их смесей.

13. Композиция по п.9, где наполнитель, отличный от неорганическо-органического нанокомпозита, выбран из группы, состоящей из карбоната кальция, осажденного карбоната кальция, коллоидного карбоната кальция, карбоната кальция, обработанного соединениями стеарата или стеариновой кислоты, коллоидальной двуокиси кремния, осажденного диоксида кремния, силикагелей, гидрофобизированных оксидов кремния, гидрофильных силикагелей, дробленого кварца, кварцевой муки, окиси алюминия, гидроксида алюминия, гидроксида титана, глины, белой глины (каолина), бентонита, монтмориллонита, диатомовой земли, оксида железа, сажи, графита, слюды, талька и их смесей.

14. Отверждаемая композиция по п.1, где:
диорганополисилоксан (а), заканчивающийся силанольной группой, имеет общую формулу:
MaDbD'с,
где а имеет значение 2, и b равно или больше 1, а с равно нулю или положительному числу; М является
(НО)3-х-yR1xR2ySiO1/2,
где х имеет значение 0, 1 или 2, и у имеет значение либо 0, либо 1, при том ограничивающем условии, что х+у меньше или равно 2, R1 и R2 каждый независимо являются одновалентной углеводородной группой, имеющей до 60 атомов углерода; D является
R3R4SiO2/2,
где R3 и R4 каждый независимо являются одновалентной углеводородной группой, имеющей до 60 атомов углерода; и D' является
R5R6SiO2/2,
где R5 и R6 каждый независимо являются одновалентной углеводородной группой, имеющей до 60 атомов углерода;
перекрестно-сшивающий агент (b) является алкилсиликатом, имеющим формулу:
(R14O)(R15O)(R16O)(R17O)Si,
где R14, R15, R16 и R17 каждый независимо выбраны из одновалентной углеводородной группой, имеющей до 60 атомов углерода;
катализатор (с) является оловосодержащим катализатором; и
неорганическая часть наночастиц неорганическо-органического нанокомпозита (d) выбрана из группы, состоящей из монтмориллонита, монтмориллонита натрия, монтмориллонита кальция, монтмориллонита магния, нонтронита, бейделлита, волконскоита, лапонита, гекторита, сапонита, сауконита, магадита, кеньяита, собоскита, свиндордита, стевенсита, вермикулита, галлуазита, оксидов алюминатов, гидротальцита, иллита, ректорита, тразовита, ледикита, каолинита и их смесей, органическая часть неорганическо-органического нанокомпозита (d) является, по меньшей мере, одним четвертичным аммониевым соединением R6R7R8N+X-, где, по меньшей мере, один R6, R7 и R8 является алкоксисиланом, имеющим до 60 атомов углерода, и оставшиеся группы являются алкильными или алкенильными группами, имеющими до 60 атомов углерода, и Х является анионом.

15. Отвержденная композиция, обладающая низкой проницаемостью для газа(ов), полученная отверждением отверждаемой герметизирующей композиции по любому из пп.1, 8, 9 или 14.

16. Отвержденная композиция по п.15, обладающая коэффициентом проницаемости для аргона не более чем примерно 900 баррер.

Документы, цитированные в отчете о поиске Патент 2011 года RU2434036C2

US 5266631 А, 30.11.1993
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
ГЕРМЕТИК НА ОСНОВЕ НИЗКОМОЛЕКУЛЯРНОГО СИЛОКСАНОВОГО КАУЧУКА 2003
  • Арсланов Р.Х.
  • Стариков А.Н.
  • Подшивалин А.В.
  • Прасолова Т.Н.
  • Фомин А.С.
  • Закиров З.Р.
RU2249027C1
EP 1457527 A1, 15.09.2004
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
Пневматическая ручная сверлильная машина 1980
  • Гайдуков Александр Владимирович
  • Бойко Виталий Тихонович
  • Яковлев Лев Николаевич
  • Горник Леонид Аврумович
SU994151A1
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек 1923
  • Григорьев П.Н.
SU2007A1

RU 2 434 036 C2

Авторы

Уилльямс Дэвид А.

Кумар Викрам

Несакумар Эдвард Дж.

Рамакришнан Индуматхи

Даты

2011-11-20Публикация

2007-01-17Подача