УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ КАПЕЛЬНОЙ ЖИДКОСТИ В ПОТОКЕ ГАЗА Российский патент 2012 года по МПК G01N25/56 

Описание патента на изобретение RU2439544C2

Изобретение относится к устройствам для измерения содержания капельной жидкости в потоке природного и попутного газа и может быть использовано для оценки его качества при сепарации, подготовке и определении потерь нефти в процессе ее добычи.

Для определения концентрации капельной жидкости в потоке газа в различных областях промышленности применяются весьма разнообразные средства и методы измерений [1-4], авторские свидетельства №583382 за 1974 год и №742767 за 1978 год.

Наибольшее распространение в общепромышленной практике, а затем и в нефтегазовой отрасли нашел фильтрационный метод измерения. На его базе был создан измеритель концентрации капельной жидкости [5], который работает следующим образом. Часть потока газа через подвижный или неподвижный зонд, расположенный в газопроводе, отбирается и очищается от капельной жидкости в фильтрующем узле, который состоит из перфорированного патрона, покрытого несколькими слоями фильтровальной ткани. Количество уловленной капельной жидкости определяется по калиброванным прозрачным нефтесборникам, установленным во входной и выходной зонах фильтровального узла. Количество отбираемого газа устанавливается регулятором расхода и временем выдержки по газовому счетчику. Концентрация капельной жидкости определяется отношением массы накопившейся в нефтесборниках жидкости к объему отобранного газа.

Основным недостатком такого типа устройства [5] является то, что при осуществлении измерения не обеспечивается поддержание в отбираемой пробе газа термодинамических условий газового потока по давлению и температуре. Если температура в фильтровальном узле выше температуры газового потока, то часть жидкости испарится и перейдет в газовую фазу, если она ниже вследствие снижения давления или воздействия атмосферных условий, то количество жидкой фазы увеличивается за счет выпадения конденсата.

Вторым недостатком данного измерителя является то, что с увеличением вязкости капельной жидкости ухудшается дренирование в нефтесборники и значительная ее часть остается в фильтровальном узле и не учитывается. При очень высокой вязкости, которой обладают некоторые типы нефтей, дренирования вообще может не быть и измерение в этом случае произвести невозможно.

Кроме того, при таком исполнении измерителя значительная часть капельной жидкости за счет действия турбулентных пульсаций, гравитационных и инерционных сил может выпадать в подводящих трубках от зонда до фильтровального узла и не учитываться.

Вследствие отмеченных выше недостатков измеренное значение концентрации может оказаться существенно заниженным или завышенным на неопределенную величину по сравнению с истинным значением, что значительно снижает точность и достоверность измерения.

Наиболее близким по технической сущности является измеритель [6], состоящий из лубрикатора, фильтровального узла с пробоотборным зондом, патрубка отвода газа с упором и регулятором расхода, направляющего цилиндра с пазами для фиксации положения фильтровального узла, счетчика газа с манометром и термометром.

При производстве измерений устройство подключается к смонтированной на газопроводе задвижке, а фильтровальный узел предварительно взвешивается. Процесс измерения осуществляется следующим образом. Задвижка открывается, фильтровальный узел вводится на требуемую глубину в газопровод и поворачивается зондом навстречу потоку, при этом упор патрубка отвода газа входит в паз направляющего цилиндра и фиксирует положение зонда. Затем регулятором устанавливается расход газа в оптимальном режиме работы счетчика с учетом обеспечения изокинетичности отбора пробы и дается выдержка во времени. После этого регулятором расхода перекрывается отбор газа, фильтровальный узел поднимается вверх, задвижка закрывается, измеритель отсоединяется от нее, фильтровальный узел вынимается, взвешивается, определяется его привес. Концентрация капельной жидкости определяется делением величины привеса фильтровального узла на количество пропущенного через него газа, измеренного счетчиком и откорректированного с учетом температуры и давления в нем.

В этой конструкции измерителя устранены основные недостатки, присущие предыдущему устройству. Исполнение фильтровального узла совместно с зондом позволило устранить неконтролируемое осаждение капель в подводящих трубках. Помещение фильтровального узла на время измерения в газовый поток обеспечило отбор проб газа с сохранением термодинамических условий, имеющихся в газопроводе. Исключение нефтесборников и быстросъемное исполнение фильтрующего узла дало возможность определять всю массу уловленной капельной жидкости.

Все отмеченные выше совершенствования способствовали повышению точности и достоверности выполнения измерений.

Длительная эксплуатация описанного выше измерителя выявила два его основных недостатка.

Первый связан с требованием соблюдения изокинетичности отбора проб газа, при которой скорость потока в точке отбора и в кончике зонда должны быть равными. Важность соблюдения этого условия для обеспечения точности и достоверности измерений достаточно полно аргументирована в работе [4]. Несоблюдение принципа изокинетичности обусловлено следующими конструктивными недоработками измерителя.

- Количество отобранного в процессе измерения газа точнее и удобнее определять по счетчику с цифровой индикацией, что предусмотрено и в данной конструкции измерителя. Однако ввиду нестабильности протекающих технологических процессов скорость газа в газопроводах постоянно изменяется и возникает необходимость, для соблюдения изокинетичности, оперативно корректировать количество отбираемого газа, а соответственно и скорость в кончике зонда регулятором расхода. Поскольку используемые счетчики не фиксируют мгновенный расход, то достаточно быстро произвести коррекцию не представляется возможным.

- Исполнение направляющего цилиндра с пазами для фиксации положения зонда по сечению трубопровода является причиной низкой точности (±30 мм) его позиционирования и, если учесть, что скорость потока газа, при постоянной средней, не является одинаковой по сечению трубопровода, то нет гарантии соблюдения изокинетичности.

- Каждый применяемый счетчик имеет свой диапазон номинального расхода газа, в котором гарантируется заложенная точность его измерения, поскольку давление, температура и скорость потока газа в трубопроводе могут изменяться на одном и том же добывающем предприятии в очень широких диапазонах, то достаточно часто возникает ситуация, при которой для соблюдения изокинетичности приходится устанавливать расход газа за пределами гарантированной точности измерения применяемого счетчика.

Другой недостаток связан с тем, что конструкция не позволяет осуществлять измерения при давлениях в газопроводе, превышающих 1,6 МПа, т.к. фильтровальный узел с зондом вводятся через лубрикатор вручную путем прямого приложения на упор патрубка отвода газа физической силы руки оператора, которая ограничена.

Целью настоящего изобретения является повышение точности измерения за счет обеспечения изокинетичности отбора проб газа и расширения диапазона применения устройства по давлению в газопроводе.

Указанная цель достигается тем, что устройство снабжено ручным зубчато-канатным приводом с пружинным фиксатором положения фильтровального узла с зондом по сечению трубопровода, линейной шкалой на направляющем цилиндре, индикатором текущего расхода газа и набором сменяемых зондов с различным внутренним сечением.

Такое исполнение измерителя обеспечивает возможность его применения при давлении в газопроводе, превышающем 1,6 МПа, фиксировать положения зонда по сечению с точностью до одного миллиметра и поддерживать скорость газа в сечении зонда, требуемую для обеспечения изокинетичности отбора пробы.

Схематично устройство для измерения концентрации капельной жидкости в потоке газа представлено на чертеже. Оно включает в себя фильтровальный узел (1), сменный пробозаборный зонд (2), газоотводной патрубок (3), направляющий цилиндр с линейной шкалой (4), регулятор расхода (5), счетчик газа (6), ротаметр (7), манометр (8), термометр (9), лубрикатор (10) и ручной зубчатоканатный привод с пружинным фиксатором положения (11).

Для производства измерения устройство подсоединяется лубрикатором (10) через фланцевый переходник (12) к задвижке (13), смонтированной на газопроводе. Перед подсоединением фильтровальный узел взвешивается, мерительным инструментом определяют исходное расстояние от центра пробозаборного зонда до верхней образующей сечения трубопровода и исходя из имеющегося профиля скоростей определяется точка в сечении трубопровода, где скорость потока будет равна средней скорости газа в трубопроводе. После подсоединения устройства задвижка (13) открывается, зонд устанавливается на глубину, где скорость потока равна средней скорости газа в трубопроводе, регулятором, с учетом средней скорости газа, давления и температуры газа и площади внутреннего сечения зонда, по ротаметру устанавливается нужный расход газа, снимаются исходные показания счетчика и дается выдержка во времени, необходимая для улавливания не менее 100 мг жидкости. В процессе выдержки, по мере необходимости, с учетом изменения скорости в газопроводе производится корректировка количества отбираемого газа. После выдержки регулятор расхода закрывается, фильтровальный узел поднимается, задвижка закрывается. Определяются привес фильтровального узла и количество отобранного газа по счетчику и по их соотношению определяют массовое количество жидкости в единице объема газа.

Предлагаемое устройство прошло промышленную апробацию в ОАО «Сургутнефтегаз» при различных давлениях в газопроводе в летнее и зимнее время года.

Литература

1. В.Н.Ужов, Б.Н.Мягков. «Очистка промышленных газов фильтрами». - М.: Химия, 1970.

2. Б.И.Леончик, В.П.Маякин. «Измерения в дисперсных потоках». - М.: Энергия, 1973.

3. Ю.П.Коротаев и др. «Подготовка газа к транспорту». - М.: Недра, 1973.

4. В.Страус.«Промышленная очистка газов». - М.: Химия, 1981.

5. Л.А.Пелевин и др. «Единая методика исследования эффективности работы газонефтяных сепараторов». - М.: Химия, 1981.

6. РД 39-0147103-352-89 «Методическое руководство по исследованию сепарационных установок», Уфа, ВНИИСПТнефть, 1989.

Похожие патенты RU2439544C2

название год авторы номер документа
ИЗМЕРИТЕЛЬ СОДЕРЖАНИЯ ДИСПЕРСНОЙ ФАЗЫ В ГАЗОВОМ ПОТОКЕ 2016
  • Ахлямов Марат Наильевич
  • Нигматов Руслан Робертович
  • Ахмадеев Камиль Хакимович
RU2644449C1
Способ замера уноса примесей с газовым потоком и устройство для его осуществления 2014
  • Зиберт Генрих Карлович
  • Щеколдин Иван Иванович
  • Зиберт Алексей Генрихович
  • Валиуллин Илшат Минуллович
RU2606099C2
Устройство для отбора проб в двухфазных потоках 2019
  • Ахметзянова Лейсан Анваровна
  • Левин Кирилл Александрович
  • Малышев Сергей Львович
  • Малышев Роман Сергеевич
RU2754669C2
ДЕТЕКТОР КОНТРОЛЯ КАПЕЛЬНОГО УНОСА 2011
  • Скрылев Сергей Александрович
  • Болотов Альберт Александрович
  • Болотов Андрей Альбертович
RU2460045C1
Установка для измерения дебита продукции газоконденсатных скважин 2017
  • Ахлямов Марат Наильевич
  • Ахмадеев Камиль Хакимович
  • Нигматов Руслан Робертович
  • Филиппов Дмитрий Анатольевич
  • Зиннатуллин Ленар Радисович
  • Урезков Михаил Федорович
  • Сухов Роман Дмитриевич
RU2655866C1
СИСТЕМА ИЗМЕРЕНИЯ СОДЕРЖАНИЯ КАПЕЛЬНОЙ ЖИДКОСТИ В ПОТОКЕ ПОПУТНОГО НЕФТЯНОГО ГАЗА 2020
  • Нужнов Тимофей Викторович
  • Ефимов Андрей Александрович
RU2750790C1
УСТАНОВКА И СПОСОБ ИССЛЕДОВАНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН 2014
  • Хлус Андрей Александрович
  • Латыпов Тагир Тимерханович
  • Карнаухов Михаил Львович
  • Сыропятов Владимир Павлович
  • Ловцов Александр Викторович
RU2575288C2
УСТРОЙСТВО ДЛЯ ОТБОРА ПРОБ ГАЗОВ ВЫСОКОГО ДАВЛЕНИЯ 2001
  • Бармин И.В.
  • Елисеев В.Г.
  • Климов В.Н.
  • Рахманов Ж.Р.
  • Сборец В.П.
  • Байбаков Ф.Б.
  • Чумаченко Г.Ф.
RU2193178C2
СПОСОБ И УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ ЖИДКОСТНОЙ И ГАЗОВОЙ СОСТАВЛЯЮЩЕЙ ПРОДУКЦИИ НЕФТЯНЫХ, ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН 2017
  • Корякин Александр Юрьевич
  • Жариков Максим Геннадиевич
  • Бригадиренко Сергей Владимирович
  • Шигидин Олег Александрович
  • Стрижов Николай Васильевич
  • Есипенко Алексей Геннадьевич
RU2671013C1
СПОСОБ ОТБОРА ПРОБ ГАЗОЖИДКОСТНОГО ПОТОКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Ярышев Г.М.
  • Новопашин В.Ф.
  • Муравьев П.М.
RU2091579C1

Реферат патента 2012 года УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ КАПЕЛЬНОЙ ЖИДКОСТИ В ПОТОКЕ ГАЗА

Изобретение относится к устройствам для измерения содержания капельной жидкости в потоке природного и попутного газа диапазона применения устройства по давлению в газопроводе. Устройство для измерения концентрации капельной жидкости в потоке газа содержит фильтровальный узел с пробоотборным зондом. Также устройство содержит патрубок отбора газа с регулятором расхода, направляющий цилиндр. Устройство также содержит счетчик газа с манометром и термометром. При этом устройство снабжено ручным зубчато-канатным приводом с пружинным фиксатором положения фильтровального узла с зондом, линейной шкалой на направляющем цилиндре. Также устройство снабжено индикатором текущего расхода газа и набором сменяемых зондов с различным внутренним сечением. Техническим результатом изобретения является повышение точности измерения за счет обеспечения изокинетичности отбора проб газа и расширения диапазона применения устройства по давлению в газопроводе. 1 ил.

Формула изобретения RU 2 439 544 C2

Устройство для измерения концентрации капельной жидкости в потоке газа, содержащее фильтровальный узел с пробоотборным зондом, патрубок отбора газа с регулятором расхода, направляющий цилиндр, счетчик газа с манометром и термометром, отличающееся тем, что устройство снабжено ручным зубчато-канатным приводом с пружинным фиксатором положения фильтровального узла с зондом, линейной шкалой на направляющем цилиндре, индикатором текущего расхода газа и набором сменяемых зондов с различным внутренним сечением.

Документы, цитированные в отчете о поиске Патент 2012 года RU2439544C2

Машина для изготовления проволочных гвоздей 1922
  • Хмар Д.Г.
SU39A1
- Уфа: ВНИИСПТнефть, 1989
US 4904287 А, 27.02.1990
СПОСОБ ОЧИСТКИ ГАЗОВ ОТ ТОНКОДИСПЕРСНОЙ КАПЕЛЬНОЙ ЖИДКОСТИ 2000
  • Вяхирев Г.И.
  • Загнитько А.В.
  • Ходин С.Н.
  • Чаплыгин Ю.О.
RU2162361C1
СПОСОБ ОЧИСТКИ ГАЗОВ ОТ ТОНКОДИСПЕРСНОЙ КАПЕЛЬНОЙ ЖИДКОСТИ И ТВЕРДЫХ АЭРОЗОЛЬНЫХ ЧАСТИЦ 2002
  • Загнитько А.В.
  • Чаплыгин Ю.О.
  • Бурбасов А.Н.
  • Пушко Г.И.
  • Пушко А.И.
RU2199373C1
СПОСОБ ОЧИСТКИ ГАЗОВ ОТ ТОНКОДИСПЕРСНОЙ КАПЕЛЬНОЙ ЖИДКОСТИ 2000
  • Вяхирев Г.И.
  • Загнитько А.В.
  • Ходин С.Н.
  • Чаплыгин Ю.О.
RU2162361C1
JP 2008014880 A, 24.01.2008.

RU 2 439 544 C2

Авторы

Баринов Борис Александрович

Рожнова Александра Павловна

Баринов Петр Борисович

Даты

2012-01-10Публикация

2010-03-22Подача