СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЕВОГО ШТЕЙНА Российский патент 2012 года по МПК C22B23/02 C10B57/04 

Описание патента на изобретение RU2441082C1

Изобретение относится к металлургии, а именно к способам переработки окисленных никелевых руд.

Известен способ получения никелевого штейна по патенту РФ №2187568, в котором в качестве топлива-восстановителя используют металлургический кокс и сортовой каменный уголь с выходом летучих веществ не более 14%.

Недостатком данного способа является повышенное содержание никеля в шлаке и повышенный расход кокса.

Известен способ получения никелевого штейна по патенту РФ №2184162, выбранный в качестве прототипа, включающий загрузку в шахтную печь шихты, содержащей окускованную окисленную никельсодержащую руду и топливо-восстановитель, восстановительно-сульфидирующую плавку с использованием в качестве топлива-восстановителя металлургического и кускового нефтяного кокса, взятых в соотношении соответственно 40-95:60-5 мас.%.

Недостатком способа, выбранного за прототип, является повышенный расход кокса при плавке и пониженный удельный проплав, высокая зольность металлургического кокса, пониженная крупность кокса.

Техническим результатом является снижение расхода топлива и увеличение проплава окисленной никелевой руды за счет повышения теплотворной способности и снижения реакционной способности кокса, снижение содержания никеля в шлаках за счет взаимодействия кокса, имеющего высокое содержание серы, с никелем расплава и переводом его в сульфид серы, переходящий в штейн.

Технический результат достигается тем, что в способе получения никелевого штейна, включающем загрузку в шахтную печь шихты, содержащей окускованную окисленную никельсодержащую руду и топливо-восстановитель, восстановительно-сульфидирующую плавку с использованием в качестве топлива-восстановителя кокса, согласно изобретению применяют кокс, являющийся результатом коксования шихты, содержащей продукт с выходом летучих веществ от 14 до 25% в количестве (5-100) мас.%, полученный путем замедленного полукоксования тяжелых нефтяных остатков.

Кокс, полученный при коксовании нефтяных полукоксов с выходом летучих веществ от 14 до 25%, обогащенных в процессе замедленного полукоксования высокомолекулярными летучими веществами (таблица 2, шихта 7), отличается от нефтяного кокса, получаемого при прокалке нефтяных полукоксов с выходм летучих веществ 8-10% (до 14%), например в кольцевых или вращающихся барабанных печах, более высокой прочностью, повышенной крупностью кусков кокса (Д мм), пониженной реакционной способностью (CRI), повышенной послереакционной прочностью (CSR). Таким образом, это специальный кокс с улучшенными свойствами. Добавки такого полукокса к угольным шихтам (таблица 2, шихты 1-6) улучшают качество получаемого кокса.

Кокс, полученный из шихты, содержащей продукт (полученный путем замедленного полукоксования тяжелых нефтяных остатков) с выходом летучих веществ от 14 до 25% в количестве 5-100 мас.%, обладает свойствами, приведенными в таблице 1.

Для удобства изложения продукт с выходом летучих веществ от 14 до 25%, полученный способом замедленного полукоксования тяжелых нефтяных остатков, далее по тексту обозначим как добавку ДК.

Угольная часть шихты приведена как один из частных случаев для примера. Возможны другие компоненты и комбинации шихт.

При этом в таблице 2 приведены примеры шихт, которые обозначены в таблице 1 как шихты 1,2,3,4,5,6,7.

Таблица 1 Компоненты шихт Показатели качества компонентов Показатели качества кокса Аd, % Vdaf, % Sd, % Ивсп. Аd, % Vdaf, % Sd, % CRI CSR CBS ГЖ, ГЖО 7,69 38,30 0,72 129,0 ГЖ+Ж 8,51 36,31 0,61 139,0 КО+ОС 8,71 22,05 0,49 8.0 ОС+КС 7,62 17,72 0,50 10,0 КО+КС 9,39 20,11 0,72 7,0 К+КС 10,3 26,09 0,43 7,0 Добавка коксующаяся (ДК) 1,10 17,70 3,60 10,0 шихта 1 8,47 28,77 0,54 7,0 12,36 1,04 0,49 36,3 47,6 83,6 шихта 2 7,98 28,19 0,82 10,0 11,47 0,85 0,77 33,7 52,1 83,0 шихта 3 7,64 27,1 0,95 9,0 10,96 0,98 1,10 31,9 58,5 85,3 шихта 4 7,34 26,82 1,29 8,0 10,25 0,89 1,21 31,3 57,8 85,0 шихта 5 6,13 25,0 1,50 8,0 8,35 0,86 1,85 30,1 60,3 86,2 шихта 6 4,76 24,41 2,09 9,0 5,85 0,87 2,25 27.8 65,1 86,4 шихта 7 1,10 17,70 3,60 10 1,35 0,75 4,2 25,1 72,3 86,6

Пример 8: Шихта 8 составлена из 50% нефтяного полукокса с выходом летучих веществ 14,2% и 50% нефтяного полукокса с выходом летучих веществ 24,8%, при этом получен кокс с показателями CSR=70,5%, CRI=23,8%. При испытании в плавке получены результаты, аналогичные результатам согласно примеру 7.

Показатель Аd - зольность кокса в сухом состоянии; Vdaf - выход летучих веществ на сухое беззольное состояние кокса; S - содержание серы на сухое состояние кокса;

Ивсп. - индекс вспучивания; CRI - показатель реакционной способность кокса; CSR - показатель послереакционной прочности кокса.

Таблица 2 Компоненты шихт Варианты шихт, % 1 2 3 4 5 6 7 ГЖ, ГЖО 33,0 30,0 28,7 27,5 0 15,0 0 ГЖ+Ж 12,0 10,9 10,4 10,0 20,0 15,0 0 КО+ОС 10,0 9,1 8,7 8,3 14,0 0 0 ОС+КС 20,0 18,2 17,4 16,7 20,0 10,0 0 КО+КС 10,0 9.1 8,7 8,3 16,0 0 0 К+КС 15,0 13,6 13,1 12,5 0 10,0 0 Добавка коксующаяся (ДК) 0 9,1 13,0 16,7 30,0 50,0 100,0 Итого: 100,0 100,0 100,0 100,0 100,0 100,0 100,0

Испытания (результаты приведены в таблице 1), проведенные на печи Николаева, показывают, что послереакционная прочность кокса из шихты с добавкой ДК выше, чем у кокса без добавки. Зависимость CSR кокса от содержания добавки в шихте близка к логарифмической: lgCSR=А+BlgC, где С - содержание добавки ДК в шихте.

Нефтяной полукокс имеет ряд преимуществ по сравнению с металлургическим - он недефицитен, недорог, имеет низкую зольность (менее 0.5 мас.%), в то время как зольность металлургического кокса 11-13 мас.%. Кроме того, имеются большие перспективы роста производства нефтяного полукокса в связи с неизбежным ростом производства углубленной переработки нефти, а также специального производства добавки коксующейся ДК.

Проведенные авторами предлагаемого изобретения промышленные восстановительно-сульфидирующие плавки окисленных никелевых руд с заменой части металлургического кокса коксом из угольных шихт с добавкой ДК в количестве от 5 до 100 мас.% показали возможность снизить расход кокса при плавке окисленных никелевых руд. Следовательно, при использовании кокса из шихт с добавкой ДК снижаются потери никеля (снижается содержание никеля в шлаке).

Кроме того, за счет снижения зольности кокса и в связи с этим снижения флюсов на шлакование золы кокса также снижаются количество шлаков и потери никеля с этой частью необразующихся шлаков.

По статистическим данным авторов изобретения установлено, что расход кокса крупнее 40 мм при плавке никелевого агломерата из окисленных никелевых руд в шахтных печах на 15% ниже по сравнению с расходом кокса крупнее 25 мм. Следовательно, расход более крупного кокса при прочих равных условиях должен снижаться.

Плавка с использованием кокса с добавкой ДК должна сопровождаться при сохранении ранее применяемых условиях загрузки (величина колоши) более полным сгоранием (использованием химического потенциала) ввиду снижения высоты колоши, снижения поверхности кусков кокса, повышения газопроницаемости.

Предлагаемый способ был проверен в восстановительно-сульфидирующей плавке окисленных никелевых руд на промышленных шахтных печах высотой 5 м, длиной 14,5 м, шириной в области фурм ~ 1,4 м, с площадью сечения в области фурм ~ 20 м2. Печи имели выносной горн Петрова.

Авторами были проведены испытания и были определены показатели восстановительно-сульфидирующей плавки согласно заявленному способу с коксом из шихты с содержанием добавки ДК в количестве от 5 до 100 мас.%. Применялось воздушное дутье.

В качестве рудной части шихты использовались брикеты размером 90×50×40 мм и рудная «окать» с размером кусков крупнее 30 мм. Средний химический состав рудной части шихты, мас.% составлял: Ni - 1,08; Со - 0,022; SiO2 - 43,1; MgO - 15,2; CuO - 1,5; Fе2O3 - 18,0; Аl2O3 - 7,5.

В качестве сульфидизатора применялся пирит в количестве 8-9% от рудной части шихты, в качестве флюса - известняк в количестве 14-18%.

Технические показатели, характеризующие кокс из разных шихт, приведены в таблице 1.

Печи загружались моношихтой при помощи электрокар длиной в половину печи в последовательности: топливо (кокс), известняк, сульфидизатор, рудные материалы («откать», брикеты). Загрузка осуществлялась при остановке электрокар на половину длины печи.

Результаты испытаний приведены в таблице 3.

Таблица 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 Металлургический кокс более 40 мм 30,0 100 12,65 0,25 0,43 0,066 19,64 0,120 0,37 28,11 0 105 0 2 Кокс из шихты с 50% ДК 27,0 100 12,87 0,25 0,39 0,059 19,98 0,110 0,39 30,15 7,26 110 10 3 Кокс из шихты с 50% ДК 27,0 50 12,05 0,23 0,37 0,058 20,60 0,083 0,40 30,45 8,34 145 10 Нефтяной полукокс с летучими до 14% 50 4 Кокс из шихты с 50% ДК 27,0 80 11,95 0,23 0,40 0,057 20,45 0,084 0,41 30,11 7,36 142 10 Нефтяной полукокс с летучими до 14% 20 5 Кокс из шихты с 50% ДК 27,0 70 11,88 0,24 0,39 0,060 20,35 0,085 0,40 29,95 6,55 140 10 Уголь марки АО 30 6 Кокс из шихты с 5% ДК 30,0 100 12,60 0,25 0,43 0,066 19,5 0,12 0,37 28,20 0,32 100 0,5 7 Кокс из шихты с 15% ДК 29,5 100 12,60 0,25 0,43 0,068 19,9 0,12 0,37 28,75 2,34 100 1,67 8 Кокс из шихты со 100%ДК 27 100 11,8 0,24 0,39 0,060 20,45 0,085 0,40 30,0 8,50 145 12 9 Металлургический кокс более 40 мм 28,5 100 12,85 0,23 0,35 0,060 19,13 0,18 0,37 29,5 0 71,39 0 10 Кокс из угольной шихты с 50% ДК 26,5 100 12,95 0,25 0,37 0,045 19,85 0,15 0,39 31,6 7,0 86,33 7,0 11 Металлургический кокс из угольной шихты крупнее 40 мм 21,0 100 12,75 0,27 0,39 0,61 19,20 0,17 0,39 43,1 0 75 0 12 Кокс из угольной шихты с 50% ДК 19,8 100 12,90 0,27 0,40 0,55 20,5 0,14 0,40 46,8 8,6 92 15,0

Название столбцов таблицы 3:

1 - «№ п/п»

2 - Вид кокса

3 - Расход кокса в технологии (в %) к рудной части шихты (общий расход кокса),%

4 - Доля в общем расходе кокса, %

5 - содержание в штейне Ni, %

6 - содержание в штейне Со, %

7 - содержание в штейне Cu, %

8 - содержание в штейне As, %

9 - содержание в штейне S

10 - содержание в шлаке Ni, %

11 - содержание в шлаке S, %

12 - удельный проплав, т/м2*сут

13 - увеличение проплава, %

14 - соотношение Niштейн/Niшлак

15 - сокращение расхода кокса, % от общего расхода кокса.

Примеры 9 и 10 осуществлены при плавке брикетов из окисленных никелевых руд с дутьем, обогащенным кислородом до 24%, а прмеры 11 и 12 - при плавке агломерата и с применением дутья, обогащенного кислородом до 24%. Агломерат по примерам №11, 12 характеризуется содержанием 0,8-1% Ni; 0,025% Co.

Результаты проведенных испытаний показали, что при замене части металлургического кокса на кокс из шихты с добавкой ДК происходит сокращение расхода кокса и увеличение проплава по сравнению с металлургическим коксом.

Сокращение расхода кокса, получаемого из угольсодержащих шихт с добавкой ДК, происходит по двум причинам. Во-первых, у кокса с добавкой ДК ниже зольность, а во-вторых, выше крупность кусков кокса. Показатель зольности приведен в таблице 1. Промышленная проверка производства кокса из шихты с содержанием добавки ДК в количестве от 5 до 100 мас.% показала, что средний размер кусков такого кокса при содержании добавки ДК в количестве 40% составляет 90 мм. При этом средние размеры металлургического кокса составляют 55-65 мм. Это способствует более полному сжиганию кокса.

Кроме того, кокс из шихт с добавкой ДК имеет повышенную плотность до 1,25 г/см3, против 1,00 г/см у кокса из шихт без добавки ДК, а также более высокую истинную плотность 1,830-1,840 г/см3 против 1,790-1,815 г/см3 для коксов из шихт без добавки ДК, что приводит к снижению реакционной способности кокса.

Расход крупного кокса при слоевом процессе сжигания в низких шахтных печах типа вагранок всегда ниже при одинаковых температурных режимах и рациональной технологии загрузки за счет более полного горения углерода кокса (более полного использования химического потенциала, т.е. дожигания СО). Одновременно улучшаются экологические условия за счет снижения расхода топлива и его более полного химического сжигания (снижение выбросов СО и дымовых газов). Высокое содержание серы кокса используется в плавке для получения никелевого штейна.

Следует также отметить, что с ростом содержания добавки ДК в шихте для коксования снижается стоимость кокса, следовательно, удешевляется процесс производства никелевого штейна.

Таким образом, использование кокса из шихт с добавкой коксующейся ДК взамен металлургического кокса приводит к снижению суммарного расхода кокса при получении никелевого штейна. По сравнению с нефтекоксом снижается выход летучих веществ в дымовых газах, улучшается экология, упрощается эксплуатация фильтров для удаления пыли.

Снижение расхода кокса также сопровождается улучшением экологии процесса, т.к. ведет к снижению выброса суммы дымовых газов.

Похожие патенты RU2441082C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ МЕДНОГО ШТЕЙНА 2010
  • Шашмурин Павел Иванович
  • Посохов Юрий Михайлович
  • Загайнов Владимир Семенович
  • Стуков Михаил Иванович
  • Косогоров Сергей Александрович
  • Мамаев Михаил Владимирович
RU2441080C1
СПОСОБ ПИРОМЕТАЛЛУРГИЧЕСКОЙ ПЕРЕРАБОТКИ МЕДЬСОДЕРЖАЩИХ МАТЕРИАЛОВ 2010
  • Шашмурин Павел Иванович
  • Посохов Юрий Михайлович
  • Загайнов Владимир Семенович
  • Стуков Михаил Иванович
  • Косогоров Сергей Александрович
  • Мамаев Михаил Владимирович
RU2441081C1
СПОСОБ ПОЛУЧЕНИЯ ВАТЫ МИНЕРАЛЬНОЙ 2010
  • Шашмурин Павел Иванович
  • Посохов Юрий Михайлович
  • Загайнов Владимир Семенович
  • Стуков Михаил Иванович
  • Косогоров Сергей Александрович
  • Мамаев Михаил Владимирович
  • Матюхин Владимир Ильич
RU2439006C1
СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЕВОГО ШТЕЙНА 2001
  • Шашмурин П.И.
  • Посохов М.Ю.
  • Стуков М.И.
  • Загайнов В.С.
  • Журавлева Д.Д.
  • Лысенко А.В.
  • Стуков Д.В.
  • Сорокин А.А.
  • Уймин В.А.
RU2187568C1
СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЕВОГО ШТЕЙНА 2000
  • Шашмурин П.И.
  • Посохов М.Ю.
  • Стуков М.И.
  • Загайнов В.С.
  • Литвин Е.М.
  • Сорокин А.А.
  • Уймин В.А.
  • Мамаев М.В.
RU2184162C2
СПОСОБ ПОЛУЧЕНИЯ КОКСА 2016
  • Венц Виктор Александрович
RU2613051C1
СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЕВОГО ШТЕЙНА 2011
  • Шашмурин Павел Иванович
  • Загайнов Владимир Семенович
  • Стуков Михаил Иванович
RU2455375C1
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛУРГИЧЕСКОГО КОКСА 2013
  • Кобелев Владимир Андреевич
  • Чернавин Александр Юрьевич
  • Стуков Михаил Иванович
  • Загайнов Владимир Семенович
  • Мамаев Михаил Владимирович
  • Бидило Игорь Викторович
  • Стахеев Сергей Георгиевич
  • Лысенко Алексей Владимирович
  • Сухов Сергей Витальевич
  • Валявин Геннадий Георгиевич
  • Запорин Виктор Павлович
RU2553116C1
ПЫЛЕУГОЛЬНОЕ ТОПЛИВО ДЛЯ ДОМЕННОЙ ПЛАВКИ 2012
  • Кобелев Владимир Андреевич
  • Чернавин Александр Юрьевич
  • Чернавин Даниил Александрович
  • Нечкин Георгий Александрович
  • Стуков Михаил Иванович
  • Загайнов Владимир Семенович
  • Косогоров Сергей Александрович
  • Зорин Максим Викторович
  • Посохов Юрий Михайлович
  • Валявин Геннадий Георгиевич
  • Запорин Виктор Павлович
  • Сухов Сергей Витальевич
  • Бидило Игорь Викторович
  • Мамаев Михаил Владимирович
RU2490316C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОСЕРНИСТОГО НЕФТЯНОГОКОКСА 1969
  • И. Сюн Ев, Г. Ф. Ивановский, Н. С. Зное, А. А. Вдв,
  • Т. Хурамшин, В. М. Гермаш, Ю. И. Сыч, Р. Н. Гфаев, П. И. Куперман, А. Д. Судовиков, Г. Н. Бездверный, В.
  • В. В. Бого Вленский
SU254471A1

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЕВОГО ШТЕЙНА

Изобретение относится к способам переработки окисленных никелевых руд. Проводят загрузку в шахтную печь шихты, содержащей окускованную окисленную никельсодержащую руду и топливо-восстановитель. Затем проводят восстановительно-сульфидирующую плавку с использованием в качестве топлива-восстановителя кокса. При этом в качестве кокса используют кокс, полученный в результате коксования шихты, содержащей 5-100 мас.% продукта с выходом летучих веществ от 14 до 25%, полученного путем замедленного полукоксования тяжелых нефтяных остатков. Техническим результатом является снижение расхода топлива и увеличение проплава окисленной никелевой руды за счет повышения теплотворной способности и снижения реакционной способности кокса, снижение содержания никеля в шлаках за счет взаимодействия кокса, имеющего высокое содержание серы, с никелем из расплава и переводом его в сульфид серы, переходящий в штейн. 3 табл.

Формула изобретения RU 2 441 082 C1

Способ получения никелевого штейна, включающий загрузку в шахтную печь шихты, содержащей окускованную окисленную никельсодержащую руду и топливо-восстановитель, и восстановительно-сульфидирующую плавку с использованием в качестве топлива-восстановителя кокса, отличающийся тем, что в качестве кокса используют кокс, полученный в результате коксования шихты, содержащей 5-100 мас.% продукта с выходом летучих веществ от 14 до 25%, полученного путем замедленного полукоксования тяжелых нефтяных остатков.

Документы, цитированные в отчете о поиске Патент 2012 года RU2441082C1

СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЕВОГО ШТЕЙНА 2000
  • Шашмурин П.И.
  • Посохов М.Ю.
  • Стуков М.И.
  • Загайнов В.С.
  • Литвин Е.М.
  • Сорокин А.А.
  • Уймин В.А.
  • Мамаев М.В.
RU2184162C2
ДОБАВКА КОКСУЮЩАЯ 2008
  • Стуков Михаил Иванович
  • Посохов Михаил Юрьевич
  • Загайнов Владимир Семенович
  • Литвин Евгений Михайлович
  • Сухов Сергей Витальевич
  • Валявин Геннадий Георгиевич
  • Запорин Виктор Павлович
  • Ветошкин Николай Иванович
  • Мамаев Михаил Владимирович
RU2355729C1
СПОСОБ ПОЛУЧЕНИЯ НИЗКОСЕРНИСТОГО НЕФТЯНОГО КОКСА 2007
  • Мордкович Владимир Зальманович
  • Караева Аида Разимовна
  • Харитонова Елена Юрьевна
  • Митберг Эдуард Борисович
  • Маслов Игорь Александрович
  • Заглядова Светлана Вячеславовна
RU2338771C1
ШИХТА ДЛЯ ШАХТНОЙ ПЛАВКИ ОКИСЛЕННЫХ НИКЕЛЬСОДЕРЖАЩИХ МАТЕРИАЛОВ 1993
  • Селиванов Е.Н.
  • Хохлов О.И.
  • Пименов Л.И.
  • Новиков Л.Г.
  • Харитиди Г.П.
  • Сасовских Ю.А.
  • Чумарев В.М.
RU2065504C1
СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЕВОГО ШТЕЙНА 2001
  • Шашмурин П.И.
  • Посохов М.Ю.
  • Стуков М.И.
  • Загайнов В.С.
  • Журавлева Д.Д.
  • Лысенко А.В.
  • Стуков Д.В.
  • Сорокин А.А.
  • Уймин В.А.
RU2187568C1
US 5017220 A, 21.05.1991.

RU 2 441 082 C1

Авторы

Шашмурин Павел Иванович

Тристан Виктор Михайлович

Посохов Юрий Михайлович

Загайнов Владимир Семенович

Стуков Михаил Иванович

Косогоров Сергей Александрович

Мамаев Михаил Владимирович

Даты

2012-01-27Публикация

2010-07-29Подача