ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С МАЛЫМ НАПРЯЖЕНИЕМ ПИТАНИЯ Российский патент 2012 года по МПК H03F3/45 

Описание патента на изобретение RU2441316C1

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения (например, в операционных усилителях (ОУ), компараторах и т.п.).

Известны схемы дифференциальных усилителей (ДУ) на основе двух параллельно-включенных по входам дифференциальных каскадов (ДК) с токостабилизирующими двухполюсниками в эмиттерных цепях входных транзисторов (так называемые «dual input stage»). ДУ с такой архитектурой стали основой построения многих современных операционных усилителей как на биполярных [1-17], так и на полевых [16-28] транзисторах. Однако такие ДУ имеют недостаточно высокое ослабление входных синфазных сигналов при использовании в качестве токостабилизирующих двухполюсников пассивных элементов (резисторов), что отрицательно сказывается на точности аналоговых интерфейсов с их использованием. Это связано с тем, что для получения больших значений коэффициента ослабления входных синфазных сигналов (Кос.сф) необходимо выбирать сопротивление токостабилизирующих резисторов на уровне сотен килоом, что создает проблемы со статическим режимом при низковольтном питании (Eп=1,5÷2,5 В). С другой стороны, при напряжениях питания Еп=±1 В единственным способом стабилизации статического режима ДК становится применение низкоомных резисторов в качестве токостабилизирующих двухполюсников, так как при других вариантах их построения, например в виде транзисторных источников тока, требуемое напряжение питания должно быть не менее 1,4 В.

Ближайшим прототипом (фиг.1) заявляемого устройства является дифференциальный усилитель, описанный в патенте США №5225791, fig.2, содержащий первый 1 и второй 2 входные транзисторы, объединенные эмиттеры которых через первый 3 токостабилизирующий двухполюсник соединены с первой 4 шиной источника питания, базы соединены с соответствующими первым 5 и вторым 6 входами устройства, коллектор первого 1 входного транзистора соединен с первым 8 выходом устройства и через первый 9 двухполюсник нагрузки соединен со второй 10 шиной источника питания, коллектор второго 2 выходного транзистора соединен со вторым 11 выходом устройства и через второй 12 двухполюсник нагрузки связан со второй 10 шиной источника питания, третий 13 и четвертый 14 входные транзисторы, объединенные эмиттеры которых связаны со второй 10 шиной источника питания через второй 15 токостабилизирующий резистор, база третьего 13 выходного транзистора подключена к первому 5 входу устройства, база четвертого 14 входного транзистора соединена со вторым 6 входом устройства, причем первый 1 и третий 13 входные транзисторы, а также второй 2 и четвертый 14 входные транзисторы имеют противоположение типы проводимости.

Существенный недостаток известного ДУ состоит в том, что он имеет невысокое ослабление входных синфазных сигналов. Прежде всего, данный недостаток проявляется при использовании в качестве первого 3 и второго 15 токостабилизирующих двухполюсников резисторов или простейших источников тока на транзисторах с малым напряжением Эрли, которые при милиамперных токах имеют небольшое выходное сопротивление (порядка 20-30 кОм).

Основная задача предлагаемого изобретения состоит в повышении коэффициента ослабления входных синфазных сигналов ДУ (Кос.сф) при относительно небольших сопротивлениях первого 3 и второго 15 токостабилизирующих двухполюсников. При этом в заявляемом ДУ в качестве токостабилизирующих двухполюсников 3 и 15 при низковольтном питании могут применяться сравнительно низкоомные резисторы (единицы килоом). Тем не менее это несущественно сказывается на численных значениях его Кос.сф.

Поставленная задача решается тем, что в дифференциальном усилителе с малым напряжением питания фиг.1, содержащем первый 1 и второй 2 входные транзисторы, объединенные эмиттеры которых через первый 3 токостабилизирующий двухполюсник соединены с первой 4 шиной источника питания, базы соединены с соответствующими первым 5 и вторым 6 входами устройства, коллектор первого 1 входного транзистора соединен с первым 8 выходом устройства и через первый 9 двухполюсник нагрузки соединен со второй 10 шиной источника питания, коллектор второго 2 выходного транзистора соединен со вторым 11 выходом устройства и через второй 12 двухполюсник нагрузки связан со второй 10 шиной источника питания, третий 13 и четвертый 14 входные транзисторы, объединенные эмиттеры которых связаны со второй 10 шиной источника питания через второй 15 токостабилизирующий резистор, база третьего 13 выходного транзистора подключена к первому 5 входу устройства, база четвертого 14 входного транзистора соединена со вторым 6 входом устройства, причем первый 1 и третий 13 входные транзисторы, а также второй 2 и четвертый 14 входные транзисторы имеют противоположение типы проводимости, предусмотрены новые элементы и связи - в схему введены первое 16 и второе 17 токовые зеркала, согласованные с первой 4 шиной источника питания, вход первого 16 токового зеркала соединен с коллектором третьего 13 входного транзистора, выход первого 16 токового зеркала связан со вторым 11 выходом устройства, вход второго 17 токового зеркала подключен к коллектору четвертого 14 входного транзистора, а выход второго 17 токового зеркала соединен с первым 8 выходом устройства.

На фиг.1 приведена схема ДУ-прототипа, а на фиг.2 - заявляемого ДУ. Переменные токи и напряжения в заявляемом ДУ при воздействии на его входы Вх.1 (5) и Вх.2 (6) синфазного сигнала uс1=uc2=uc показаны на фиг.3.

На фиг.4 изображена схема ДУ-прототипа фиг.1 на моделях SiGe интегральных транзисторов при напряжении питания ±1 В, которая исследовалась авторами в среде Cadence на степень ослабления входных синфазных сигналов uc1=v4=uc, uc2=v7=uc.

На фиг.5 показана схема заявляемого ДУ фиг.2 (при воздействии на его входы синфазного сигнала uc) на моделях SiGe интегральных транзисторов при напряжении питания ±1 В.

На фиг.6 приведена частотная зависимость коэффициента усиления по напряжению входного сигнала (Ку) сравниваемых схем фиг.4 и фиг.5.

На фиг.7 показана частотная зависимость Кос.сф сравниваемых схем ДУ.

Дифференциальный усилитель с малым напряжением питания фиг.2 и фиг.3 содержит первый 1 и второй 2 входные транзисторы, объединенные эмиттеры которых через первый 3 токостабилизирующий двухполюсник соединены с первой 4 шиной источника питания, базы соединены с соответствующими первым 5 и вторым 6 входами устройства, коллектор первого 1 входного транзистора соединен с первым 8 выходом устройства и через первый 9 двухполюсник нагрузки соединен со второй 10 шиной источника питания, коллектор второго 2 выходного транзистора соединен со вторым 11 выходом устройства и через второй 12 двухполюсник нагрузки связан со второй 10 шиной источника питания, третий 13 и четвертый 14 входные транзисторы, объединенные эмиттеры которых связаны со второй 10 шиной источника питания через второй 15 токостабилизирующий резистор, база третьего 13 выходного транзистора подключена к первому 5 входу устройства, база четвертого 14 входного транзистора соединена со вторым 6 входом устройства, причем первый 1 и третий 13 входные транзисторы, а также второй 2 и четвертый 14 входные транзисторы имеют противоположение типы проводимости. В схему введены первое 16 и второе 17 токовые зеркала, согласованные с первой 4 шиной источника питания, вход первого 16 токового зеркала соединен с коллектором третьего 13 входного транзистора, выход первого 16 токового зеркала связан со вторым 11 выходом устройства, вход второго 17 токового зеркала подключен к коллектору четвертого 14 входного транзистора, а выход второго 17 токового зеркала соединен с первым 8 выходом устройства.

В качестве токовых зеркал 16 и 17 могут применяться многие классические решения, обеспечивающие инвертирующее усиление по току с коэффициентом усиления по току Кi16i17=-1.

Рассмотрим работу заявляемого ДУ фиг.2.

Основные уравнения для статических токов и напряжений в ДУ фиг.2 при Uc1=Uc2=0 имеют вид:

где , - напряжения питания;

Uпт17, Uпт16 - напряжения на токовых зеркалах;

U15, U9, U3 - напряжения на резисторах 15, 9, 3;

Uэб.i - напряжения эмиттер-база транзисторов;

Uкб.i - напряжения коллектор-база транзисторов.

Из (1) следуют основные ограничения на напряжение питания в ДУ фиг.2:

Из последних уравнений можно найти максимальные амплитуды выходных напряжений ДУ фиг.2:

Изменение входного синфазного напряжения на входах ДУ 5 и 6 фиг.3 на величину uc=uc=uc2 приводит к изменению токов через двухполюсники 15 и 3:

где y15, y3 - проводимости двухполюсников 15 и 3;

i0=0,5i15=0,5i3.

Поэтому коллекторные токи транзисторов 1 и 2, 13 и 14:

где αi≈1 - коэффициенты передачи по току эмиттера транзисторов 1, 2, 13, 14.

Коллекторные токи транзисторов 13 и 14 iк13, iк14 передаются через токовые зеркала 16 и 17 на выходы ДУ 8, 11 и создают две составляющие тока в резисторах нагрузки 9 и 12:

где Кi12.16=Ki12.17=-1 - коэффициент передачи по току токовых зеркал 16 и 17.

Причем направления этих токов в двухполюсниках 9 и 12 противоположны направлениям токов iк1 и iк2. Поэтому в выходных узлах ДУ 8 и 17 происходит попарная взаимная компенсация синфазных составляющих ошибки усиления:

Поэтому напряжения на выходах ДУ и коэффициент передачи синфазного сигнала

где , - коэффициенты передачи синфазного сигнала ДУ-прототипа. Причем

Из (13)-(17) следует, что предлагаемый ДУ имеет, например, для выхода 11 более низкие (в Nc-раз) значения коэффициента передачи синфазного сигнала, где

Если учесть, что α13≈α2, Ki12.16=1, то при выборе R3=R15 получаем, что в предлагаемом ДУ коэффициент Nc>>1.

Дифференциальный коэффициент передачи напряжений (Ку) в ДУ фиг.3 в два раза больше, чем в ДУ-прототипе (фиг.6). При этом верхняя граничная частота Ку улучшается в два раза (fв=17,7 ГГц).

Таким образом, выигрыш по коэффициенту ослабления входных синфазных сигналов (Кос.сф) в ДУ фиг.2

где - коэффициент Кос.сф.2 ДУ-прототипа для выхода 11.

Данные выводы подтверждаются результатами компьютерного моделирования сравниваемых схем (фиг.7), которые показывают, что предлагаемый ДУ имеет более чем на 50 дБ лучшее ослабление входных синфазных сигналов. Этого достаточно для его многих применений.

Таким образом, в отличие от известного ДУ предлагаемая схема имеет существенные преимущества и может обеспечивать сравнительно большое ослабление входных синфазных сигналов при малых напряжениях питания (Еп=±1 В).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патентная заявка JP 2004/129018.

2. Патент SU №530425.

3. Патент США №4649352.

4. Патент США №5153529.

5. Патент США №5225791.

6. Патент США №5291149, fig.1.

7. Патент США №5420540.

8. Патент США №5515005, fig.2.

9. Патент США №6222416, fig.2.

10. Патент США №3974455, fig.7.

11. Патент США №4349786.

12. Патент США №4636743.

13. Патент США №4783637.

14. Патент США №5293136.

15. Патент США №6366170.

16. Патент США №6136290.

17. Патент США №6288769.

18. Патент США №5909146.

19. Патентная заявка JP 2004/222104.

20. Патент США №6801087.

21. Патент США №5917378.

22. Патентная заявка США 2008/0074405.

23. Патентная заявка США 2009/0206930.

24. Патент США №6356153.

25. Патент США №5621357.

26. Патент США №5714906.

27. Патент США №6970043.

28. Патент США №6731169.

Похожие патенты RU2441316C1

название год авторы номер документа
ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА 2011
  • Прокопенко Николай Николаевич
  • Белич Сергей Сергеевич
  • Крюков Сергей Владимирович
RU2458455C1
ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С МАЛЫМ НАПРЯЖЕНИЕМ ПИТАНИЯ 2011
  • Прокопенко Николай Николаевич
  • Серебряков Александр Игоревич
  • Белич Сергей Сергеевич
RU2444116C1
ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С МАЛЫМ НАПРЯЖЕНИЕМ ПИТАНИЯ 2011
  • Прокопенко Николай Николаевич
  • Серебряков Александр Игоревич
  • Белич Сергей Сергеевич
RU2444117C1
ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ 2005
  • Прокопенко Николай Николаевич
  • Будяков Алексей Сергеевич
  • Крюков Сергей Владимирович
RU2292633C1
ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ 2005
  • Прокопенко Николай Николаевич
  • Будяков Алексей Сергеевич
  • Крюков Сергей Владимирович
RU2283533C1
КАСКОДНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ 2006
  • Прокопенко Николай Николаевич
  • Крюков Сергей Владимирович
  • Хорунжий Андрей Васильевич
RU2319291C1
ДВУХТАКТНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ 2006
  • Прокопенко Николай Николаевич
  • Будяков Алексей Сергеевич
  • Хорунжий Андрей Васильевич
RU2319289C1
ПРЕЦИЗИОННЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ 2010
  • Прокопенко Николай Николаевич
  • Гришков Виталий Николаевич
  • Солодко Михаил Владимирович
RU2433523C1
ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С НИЗКОВОЛЬТНЫМ ПИТАНИЕМ 2006
  • Прокопенко Николай Николаевич
  • Хорунжий Андрей Васильевич
  • Крюков Сергей Владимирович
RU2319288C1
ДВУХТАКТНЫЙ КАСКОДНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ 2006
  • Прокопенко Николай Николаевич
  • Крюков Сергей Владимирович
  • Хорунжий Андрей Васильевич
RU2321161C1

Иллюстрации к изобретению RU 2 441 316 C1

Реферат патента 2012 года ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С МАЛЫМ НАПРЯЖЕНИЕМ ПИТАНИЯ

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения (например, в операционных усилителях (ОУ), компараторах и т.п.). Технический результат заключается в повышении коэффициента ослабления входных синфазных сигналов ДУ (Кос.сф) при относительно небольших сопротивлениях (единицы килоом) первого и второго токостабилизирующих двухполюсников. Дифференциальный усилитель с малым напряжением питания содержит с первого по четвертый входные транзисторы, первый и второй токостабилизирующие двухполюсники, первый и второй двухполюсники нагрузки, первое и второе токовые зеркала. 7 ил.

Формула изобретения RU 2 441 316 C1

Дифференциальный усилитель с малым напряжением питания, содержащий первый (1) и второй (2) входные транзисторы, объединенные эмиттеры которых через первый (3) токостабилизирующий двухполюсник соединены с первой (4) шиной источника питания, базы соединены с соответствующими первым (5) и вторым (6) входами устройства, коллектор первого (1) входного транзистора соединен с первым (8) выходом устройства и через первый (9) двухполюсник нагрузки соединен со второй (10) шиной источника питания, коллектор второго (2) выходного транзистора соединен со вторым (11) выходом устройства и через второй (12) двухполюсник нагрузки связан со второй (10) шиной источника питания, третий (13) и четвертый (14) входные транзисторы, объединенные эмиттеры которых связаны со второй (10) шиной источника питания через второй (15) токостабилизирующий резистор, база третьего (13) выходного транзистора подключена к первому (5) входу устройства, база четвертого (14) входного транзистора соединена со вторым (6) входом устройства, причем первый (1) и третий (13) входные транзисторы, а также второй (2) и четвертый (14) входные транзисторы имеют противоположение типы проводимости, отличающийся тем, что в схему введены первое (16) и второе (17) токовые зеркала, согласованные с первой (4) шиной источника питания, вход первого (16) токового зеркала соединен с коллектором третьего (13) входного транзистора, выход первого (16) токового зеркала связан со вторым (11) выходом устройства, вход второго (17) токового зеркала подключен к коллектору четвертого (14) входного транзистора, а выход второго (17) токового зеркала соединен с первым (8) выходом устройства.

Документы, цитированные в отчете о поиске Патент 2012 года RU2441316C1

US 5225791 A, 06.07.1993
US 4284958 A, 18.08.1981
КАСКОДНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С НИЗКОВОЛЬТНЫМ ПИТАНИЕМ 2006
  • Прокопенко Николай Николаевич
  • Будяков Алексей Сергеевич
  • Савченко Евгений Матвеевич
RU2310268C1
ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С МАЛЫМ НАПРЯЖЕНИЕМ ПИТАНИЯ 2008
  • Прокопенко Николай Николаевич
  • Будяков Алексей Сергеевич
  • Серебряков Александр Игоревич
RU2384934C2

RU 2 441 316 C1

Авторы

Прокопенко Николай Николаевич

Серебряков Александр Игоревич

Крюков Сергей Владимирович

Даты

2012-01-27Публикация

2011-02-07Подача