Изобретение относится к области металлургии, конкретнее к составам свариваемых сталей, используемых в бронезащитных конструкциях в высокоупрочненном состоянии после закалки на мартенсит.
Известна высокопрочная низколегированная сталь, закаливаемая на мартенсит, содержащая, мас.%:
Данная сталь может содержать до 0,24% никеля, или 1,65-2,0% никеля при содержании молибдена 0,35-0,60%, а также 1,1-1,8% кремния и дополнительно до 0,02% церия (Патент Российской Федерации №2031179, МПК C22C 38/28, C22C 38/34, C22C 38/50, 1995 г.).
Недостаток стали известного состава состоит в том, что она имеет низкую откольную стойкость при соударении с бронебойным сердечником пули. Это снижает ее бронестойкость.
Наиболее близким аналогом к предлагаемому изобретению является броневая сталь следующего состава, мас.%:
(Патент Российской Федерации №2341583, МПК C22C 38/48, 2007 г.).
Недостатки броневой стали данного состава состоят в том, что при многократном соударении с высокопрочными бронебойными сердечниками пуль в ней возникают полосы адиабатического сдвига, интенсивно нарастают повреждения микроструктуры, которые приводят к разрушению броневой преграды. Это снижает бронестойкость стали.
Техническая задача, решаемая изобретением, состоит в повышении бронестойкости.
Для решения поставленной технической задачи броневая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, алюминий, азот, медь и железо, она дополнительно содержит титан при следующем соотношении компонентов, мас.%:
Кроме того, броневая сталь может дополнительно содержать кобальт в количестве 0,05-5,0%.
Сущность изобретения состоит в следующем. При соударении с высокопрочным пулевым сердечником в броневой преграде возникает и распространяется вглубь ударная волна, что сопровождается перемещением металла в направлении фронта возмущения и трансформацией его микроструктуры. После разгрузки импульса ударно-волнового воздействия происходит образование микротрещин в стали. Введение в состав предложенной стали 0,01-0,15% титана при регламентированном содержании остальных компонентов обеспечивает снижение объема металла, перемещаемого за фронтом ударной волны, вызывает искажение кристаллической решетки реечного мартенсита и появлению в ней дополнительной упрочняющей фазы - мартенсита деформации с ε-карбидной фазой титана.
Деформационное структурное упрочнение стали в результате ударно-волнового воздействия приводит к тому, что сердечник пули при соударении с броневой преградой разрушается на более мелкие фрагменты, чем обеспечивается ее непробитие.
Введение в сталь предложенного состава кобальта обеспечивает расширение температурного интервала устойчивого состояния мартенсита, за счет чего повышается живучесть бронеконструкции в целом.
Углерод упрочняет сталь. При концентрации углерода менее 0,24% не достигается требуемая прочность и твердость стали, а при его концентрации более 0,64% снижаются вязкость, пластичность и бронезащитные свойства закаленной стали. Кроме того, при концентрации углерода более 0,64% не исключается коробление и поводки при сварке деталей броневой преграды.
Кремний раскисляет сталь, повышает ее прочность и упругость. Он упрочняет сталь без образования карбидов и нитридов, повышает устойчивость мартенсита при локальном нагреве в месте соударения с пулевым сердечником. При концентрации кремния менее 0,4% прочность стали ниже допустимой, а при концентрации более 1,9% снижается ее пластичность и вязкость, а также свариваемость.
Марганец раскисляет и упрочняет сталь, связывает серу. При содержании марганца менее 0,30% прочность и твердость стали недостаточны. Увеличение содержания марганца более 1,60% приводит к снижению ударной вязкости закаленной стали.
Хром повышает прочность, вязкость и бронестойкость стали. При его концентрации менее 0,6% прочность и вязкость ниже допустимых значений. Увеличение содержания хрома более 2,0% приводит к потере пластичности.
Никель способствует повышению пластичности и вязкости закаленной стали, но при его содержании более 1,8% повышается содержание остаточного аустенита в стали и ухудшается бронестойкость. Снижение содержания никеля менее 0,6% приводит к потере пластичности и ударной вязкости.
Молибден образует мелкодисперсные карбиды, благоприятно изменяет распределение вредных примесей, уменьшая их концентрацию по границам зерен, повышает прочность и вязкость стали, обусловливает мелкозернистость микроструктуры. При содержании молибдена менее 0,10% прочность стали ниже требуемого уровня, а увеличение его содержания более 0,40% ухудшает свариваемость и пластичность закаленной стали.
Алюминий дораскисляет сталь, способствует измельчению микрострктуры, повышению работы удара и бронестойкости стали. При содержании алюминия менее 0,01% его присутствие не сказывается на повышении функциональных свойств стали. Увеличение концентрации алюминия более 0,15% ведет к графитизации стали, снижению броневой стойкости.
Влияние азота в данной стали подобно влиянию углерода, но азот, упрочняя сталь, не вызывает снижения ударной вязкости. При содержании азота менее 0,001% сталь имеет недостаточную прочность. Увеличение его концентрации более 0,020% ведет к потере пластичности и снижению откольной стойкости.
Медь повышает теплостойкость стали при локальном тепловыделении в месте соударения с бронебойным сердечником. При концентрации меди менее 0,5% имеет место локальное снижение прочностных свойств и бронестойкости стали. Увеличение концентрации меди более 0,35% снижает ударную вязкость и свариваемость закаленной стали, что недопустимо.
Титан оказывает существенное влияние на сопротивление пробитию и эволюцию микроструктуры в месте соударения. При содержании титана в стали предложенного состава менее 0,01%) циклические соударения при обстреле ведут к накоплению повреждений и разрушению броневой преграды. Увеличение концентрации титана более 0,15% нежелательно, так как уменьшает дессипацию кинетической энергии при соударении с броневым сердечником, что увеличивает вероятность пробития броневой преграды.
Введение в сталь кобальта способствует повышениют бронестойкость стали при повышенных температурах, обусловленных как прямым термическим влиянием, так и адиабатическим нагревом, возникающим при соударении сердечника пули с броневой преградой. При снижении содержания кобальта менее 0,05% ухудшается бронестойкость стали при нагреве. Увеличение концентрации кобальта более 5,0% снижает ударную вязкость, способствует разрушению стальной броневой преграды при ударно-волновом деформировании и снижению бронестойкости.
Стали различного химического состава выплавляли в электродуговой печи. Выплавленную сталь в ковше раскисляли ферромарганцем, ферросилицием, легировали феррохромом, ферромолибденом, ферротитаном, ферроазотом, вводили металлические никель, медь, алюминий, кобальт. С помощью синтетических шлаков удаляли избыток серы и фосфора. Химический состав выплавляемых сталей приведен в табл.1.
Сталь разливали в слитки и подвергали прокатке в слябы толщиной 100 мм. Затем слябы нагревали до температуры 1250°C и прокатывали на реверсивном стане кварто 2000 в листы толщиной от 5,0 до 12,0 мм.
Листовую сталь с различными составами подвергали незамедлительной закалке водой с прокатного нагрева от температуры 840°C. Закаленную сталь составов №1-5 и 11 отпускали при температуре 250°C, а составов №6-10 отпускали при температуре 450°C. Время выдержки в обоих случаях составляло 3 ч.
После охлаждения от листовой стали отбирали пробы и производили испытания механических свойств, а также бронестойкости. Бронестойкость оценивали по минимальной толщине H (мм) непробития пластин при обстреле из снайперской винтовки Драгунова бронебойными пулями типа Б-32 калибра 7,62 мм с расстояния 100 м. В таблице 2 приведены результаты испытаний свойств горячекатаной листовой стали.
Из таблиц 1 и 2 следует, что предложенная сталь (составы №2-4, 7-9), имеет наиболее высокую бронестойкость: минимальная толщина листа, выдерживающая стандартные баллистикоударные испытания, составляла H=6,0-6,5 мм.
При запредельных содержаниях химических элементов в сталях (составы №1, №5, №6, №10), а также при использовании стали-прототипа (состав 11) механические и бронезащитные свойства горячекатаных закаленных листов снижаются, значение Н возрастает до 10-12 мм.
Технико-экономические преимущества предложенной броневой стали состоят в том, что введение в ее состав 0,01-0,10% титана при регламентированной концентрации всех остальных элементов обеспечивает в процессе закалки полное превращение аустенита в мартенсит, уменьшение количества включений перлитной фазы, повышение бронестойкости. Дополнительное введение в сталь кобальта в количестве 0,05-5,0% повышает температурную стабильность мартенсита, сталь сохраняет высокие функциональные свойства даже при более высоких температурах отпуска, что также способствует повышению бронестойкости стали и живучести броневой конструкции.
В качестве базового объекта принята сталь-прототип. Использование предложенной стали позволит как повысить эффективность бронезащитных конструкций в целом на 8-10%, так и снизить их толщину и массу при сохранении бронезащитных свойств.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ДЕФОРМАЦИОННО-ТЕРМИЧЕСКОГО ПРОИЗВОДСТВА ЛИСТОВОГО ПРОКАТА | 2011 |
|
RU2481407C1 |
ВЫСОКОПРОЧНАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ | 2018 |
|
RU2701325C1 |
БРОНЕВАЯ ТЕРМОСТОЙКАЯ СВАРИВАЕМАЯ МАРТЕНСИТНАЯ СТАЛЬ | 2008 |
|
RU2400558C2 |
СПОСОБ ПРОИЗВОДСТВА ГЕТЕРОГЕННОЙ ЛИСТОВОЙ СТАЛИ | 2012 |
|
RU2493270C1 |
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВОЙ СТАЛИ | 2012 |
|
RU2499844C1 |
СПОСОБ ПРОИЗВОДСТВА СТАЛЬНЫХ ЛИСТОВ ДЛЯ ГЕТЕРОГЕННЫХ БРОНЕЗАЩИТНЫХ КОНСТРУКЦИЙ | 2010 |
|
RU2415368C1 |
СЛОИСТЫЙ БРОНЕЗАЩИТНЫЙ МАТЕРИАЛ | 2009 |
|
RU2429971C2 |
СПОСОБ ПРОИЗВОДСТВА СВЕРХВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ | 2014 |
|
RU2583229C9 |
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ | 2015 |
|
RU2593810C1 |
ВЫСОКОПРОЧНАЯ БРОНЕВАЯ СТАЛЬ И СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ НЕЕ | 2013 |
|
RU2520247C1 |
Изобретение относится к составам свариваемых сталей, используемых в бронезащитных конструкциях в высокоупрочненном состоянии после закалки на мартенсит. Броневая сталь содержит, мас.%: 0,24-0,64 C; 0,4-1,9 Si; 0,3-1,6 Mn; 0,6-2,0 Cr; 0,6-1,8 Ni; 0,10-0,40 Mo; 0,01-0,15 Al; 0,001-0,020 N; 0,05-0,35 Cu; 0,01-0,15 Ti; остальное Fe. Кроме того, броневая сталь может дополнительно содержать 0,05-5,0 мас.% Co. Сталь предложенного состава обладает повышенной бронестойкостью. 1 з.п. ф-лы, 2 табл.
1. Броневая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, алюминий, азот, медь и железо, отличающаяся тем, что она дополнительно содержит титан при следующем соотношении компонентов, мас.%:
2. Броневая сталь по п.1, отличающаяся тем, что она дополнительно содержит кобальт в количестве 0,05-5,0 мас.%.
CN 1990895 A, 04.07.2007 | |||
БРОНЕВАЯ СТАЛЬ И СТАЛЬНАЯ БРОНЕДЕТАЛЬ | 2007 |
|
RU2353697C1 |
БРОНЕВАЯ СТАЛЬ | 2006 |
|
RU2341583C2 |
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок | 1923 |
|
SU2008A1 |
Приспособление для точного наложения листов бумаги при снятии оттисков | 1922 |
|
SU6A1 |
KR 102008060091 A, 01.07.2008. |
Авторы
Даты
2012-04-10—Публикация
2011-03-10—Подача