Изобретение относится к области металлургии, конкретнее к составам высокопрочных свариваемых сталей с повышенной термостойкостью, используемых в специальных конструкциях в высокоупрочненном состоянии после закалки на мартенсит.
Листовая горячекатаная броневая термостойкая сталь мартенситного класса БТСМ 150-200 с повышенными бронезащитными свойствами должна обладать следующим комплексом механических и специальных характеристик (табл.1):
Известна конструкционная сталь [1] следующего химического состава, мас.%:
Недостатки стали известного состава состоят в том, что горячекатаные листы в закаленном на мартенсит и низкоотпущенном состоянии имеют недостаточные твердость и прочность. Это не позволяет использовать ее для изготовления бронезащитных конструкций. Кроме того, при повышении температуры нагрева сталь теряет прочностные и функциональные свойства.
Известна также сталь для подложки многослойной бронепреграды, содержащая компоненты в следующем соотношении, мас.%:
Недостатком данной стали являются низкие прочностные, вязкостные и бронезащитные свойства листов в закаленном состоянии: толщина Н листов не может быть менее 10 мм, а в случае минимальной концентрации всех легирующих ее элементов - не менее 13 мм. Сталь не обладает термостойкостью.
Наиболее близкой по своему составу и свойствам к предложенной стали является легированная сталь для изготовления бронеэлементов Б100СТ следующего химического состава, мас.%:
Недостатки стали известного состава состоят в том, что горячекатаные листы, изготовленные из нее, после закалки сохраняют в структуре остаточный аустенит, в результате чего сталь имеет недостаточный уровень бронестойкости: при твердости закаленных листов 63 HRC, стандартные испытания на обстрел выдерживают листы толщиной не менее 15 мм. Сталь имеет низкую свариваемость, т.к. в сварном шве образуются горячие и холодные трещины. Вследствие низкой термостойкости, при нагреве выше температуры 250°C закаленная сталь теряет механические и бронезащитные свойства.
Техническая задача, решаемая изобретением, состоит в повышении бронестойкости, термостойкости и свариваемости стали.
Для решения поставленной технической задачи сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, серу, фосфор и железо, дополнительно содержит кобальт и медь при следующем соотношении содержаний компонентов, мас.%:
Кроме того, при содержании углерода не более 0,15%, она имеет следующее соотношение компонентов, мас.%:
а при содержании углерода более 0,15%, она имеет следующее соотношение компонентов, мас.%:
Сущность предложенного технического решения состоит в следующем. Исследования показали, что резервом повышения бронезащитных свойств и теплостойкости закаленной стали является уменьшение содержания в ее микроструктуре остаточного аустенита, а также упрочнение по механизму внедрения в реечный мартенсит закалки атомов меди. Кобальт в стали предложенного состава в сочетании с медью обеспечивает одновременно как повышение температуры мартенситного превращения и соответствующее уменьшение содержания остаточного аустенита, так и стабильность микроструктурно-фазового состава закаленной на мартенсит стали при нагреве до температуры 650°C за счет исключения возможности торможения протекания фазовых превращений. Помимо этого медь в атомарном состоянии, находящаяся по границам зерен, препятствует их окислению в процессе нагрева и развитию межкристаллитной коррозии. В результате достигается повышение термостойкости и бронестойкости стали при относительно низкой степени легированности. А это, в свою очередь, оказывает благоприятное влияние на электросвариваемость.
Данная сталь обладает способностью закаливаемости на воздухе. Поэтому сварка изделий из стали не требует их предварительного и последующего подогрева, а также дополнительного термоупрочнения, т.к. сварной шов и зона его термического влияния после самопроизвольного охлаждения на воздухе приобретают морфологию реечного мартенсита.
Для уменьшения термических напряжений, предотвращения поводок и короблений, а также трещинообразования вследствие сваривания элементов конструкции, и, тем самым, повышения свариваемости до удовлетворительного уровня, концентрация в стали углерода не должна превышать 0,15% (т.е. 0,001-0,15% С), а для достижения максимальной бронестойкости концентрация углерода должно быть более 0,15% (т.е. 0,16-0,41% С), при более узких диапазонах концентраций всех легирующих компонентов. В обоих вариантах сталь имеет более высокие бронестойкость, термостойкость и свариваемость, чем сталь-прототип [3].
Углерод упрочняет сталь. При концентрации углерода менее 0,001% не достигается требуемая прочность и твердость стали, а при его концентрации более 0,41% снижаются вязкость, пластичность и бронезащитные свойства закаленной стали. Увеличение концентрации углерода более 0,15% в заявляемых пределах не исключает коробления и поводок при сварке деталей из тонких листов (толщиной менее 6,0 мм). В то же время, увеличение содержания углерода более 0,15% способствует повышению бронестойкости стали и не вызывает коробления и поводок при сварке деталей из листов толщиной более 6,0 мм.
Кремний раскисляет сталь, повышает ее прочность и упругость. Он упрочняет сталь без образования карбидов и нитридов, повышает устойчивость мартенсита при нагреве до температуры 650°C и выше. При концентрации кремния менее 0,10% прочность стали ниже допустимой, а при концентрации более 2,60% снижается ее пластичность и вязкость, а также свариваемость. При относительно низкой концентрации углерода (не более 0,15%) повышение содержания кремния более 0,80% ведет к короблениям и поводкам при сваривании деталей из тонких листов, а при содержании углерода более 0,15% снижение содержания кремния менее 0,60% не обеспечивает достижения максимальной бронестойкости.
Марганец раскисляет и упрочняет сталь, связывает серу. При содержании марганца менее 0,30% прочность и твердость стали недостаточны. Увеличение содержания марганца более 1,80% приводит к снижению ударной вязкости закаленной стали. Причем в стали с концентрацией углерода не более 0,15% снижение содержания марганца менее 0,60% приводит к короблениям и поводкам при сваривании деталей из тонких листов, а в стали с концентрацией углерода более 0,15% увеличение содержания марганца более 0,70% не позволяет достичь максимальной бронестойкости.
Хром повышает прочность, вязкость и бронестойкость стали. При его концентрации менее 0,10% прочность и вязкость ниже допустимых значений. Увеличение содержания хрома более 8,60% приводит к потере пластичности и термостойкости из-за роста карбидов, которые распадаются в процессе нагрева изделий из стали при их эксплуатации. В стали с концентрацией углерода не более 0,15% при снижении содержания хрома менее 0,60% имеют место коробления и поводки свариваемых деталей из тонких листов, а в стали с концентрацией углерода более 0,15% при снижении содержания хрома более 0,50% не достигается максимально возможная бронестойкость.
Никель способствует повышению пластичности и вязкости закаленной стали, но при его содержании более 1,90% повышается содержание остаточного аустенита в стали и ухудшается бронестойкость. Снижение содержания никеля менее 0,10% приводит к потере пластичности и ударной вязкости, сталь теряет термоустойчивость. В стали с концентрацией углерода не более 0,15% при снижении содержания никеля менее 1,20% имеют место коробления и поводки свариваемых деталей из тонких листов, а в стали с концентрацией углерода более 0,15% при увеличении содержания никеля более 1,60% не достигается максимально возможная бронестойкость.
Молибден образует мелкодисперсные карбиды, благоприятно изменяет распределение вредных примесей, уменьшая их концентрацию по границам зерен, повышает прочность и вязкость стали, обусловливает мелкозернистость микроструктуры. При содержании молибдена менее 0,1% прочность стали ниже требуемого уровня, а увеличение его содержания более 0,60% ухудшает свариваемость и пластичность закаленной стали. В стали с концентрацией углерода не более 0,15% при снижении содержания молибдена менее 0,60% имеют место коробления и поводки свариваемых деталей, а в стали с концентрацией углерода более 0,15% при увеличении содержания молибдена более 0,30% не достигается максимально возможная бронестойкость из-за образования значительного количества карбидов.
Кобальт снижает содержание остаточного аустенита в стали и частично заменяет никель, уменьшая требуемую его концентрацию, сохраняет благоприятную дислокационную морфологию тонкой структуры мартенсита.
При содержании кобальта менее 0,05% не достигается повышения бронезащитных свойств закаленных листов. Увеличение содержания кобальта сверх 4,60% не приводит к дальнейшему улучшению бронестойкости и термостойкости, а лишь ухудшает свариваемость и увеличивает расходы на легирующие. В стали с концентрацией углерода не более 0,15% при увеличении содержания кобальта более 1,90% имеют место коробления и поводки свариваемых деталей из тонких листов, а в стали с концентрацией углерода более 0,15% при увеличении содержания кобальта менее 2,0% не достигается максимально возможная бронестойкость.
Медь повышает теплостойкость стали без снижения ее бронестойкости. При концентрации меди менее 0,10% нагрев закаленной на мартенсит стали выше температуры 250°C сопровождается снижением ее прочностных свойств и бронестойкости. Увеличение концентрации меди более 1,9% снижает ударную вязкость и свариваемость закаленной стали, что недопустимо. В стали с концентрацией углерода не более 0,15% при снижении содержания меди менее 0,90% имеют место коробления и поводки свариваемых деталей, особенно из тонких листов, а в стали с концентрацией углерода более 0,15% при увеличении концентрации меди более 0,80% не достигается максимально возможная бронестойкость.
Сера и фосфор в данной стали являются вредными примесями, их концентрация должна быть как можно меньшей. Однако при концентрации серы не более 0,004% и фосфора не более 0,008% их отрицательное влияние на свойства стали незначительно. В то же время, более глубокая десульфурация и дефосфорация стали существенно удорожат ее производство, что нецелесообразно.
Стали различного химического состава выплавляли в электродуговой печи. В ковше сталь раскисляли ферромарганцем, ферросилицием, легировали феррохромом, ферромолибденом, вводили металлические медь, никель и кобальт. С помощью синтетических шлаков удаляли избыток серы и фосфора. Химический состав выплавляемых сталей приведен в табл.2.
Сталь разливали в слитки и подвергали прокатке в слябы толщиной 100 мм. Затем слябы нагревали до температуры 1240°C и прокатывали на реверсивном стане кварто 2000 в листы толщиной от 4,0 до 10,0 мм. Прокатанные листы подвергали с прокатного нагрева немедленной закалке водой от температуры 850°C и затем отпускали путем выдержки в течение 3 ч при температуре 250°C (термическое улучшение).
От готовых листов отбирали пробы и производили испытания механических и функциональных свойств. Свариваемость оценивали по отсутствию горячих и холодных трещин в сварном шве на пробах Пеллини. В таблице 3 представлены результаты испытаний горячекатаных листов из стали различных составов после термического улучшения. Дополнительно оценивали коробление и поводки, возникающие при сваривании плоских элементов из листов всех толщин.
Эти испытания позволили установить, что на свариваемых изделиях из листов толщиной более 6,0 мм поводки и коробления отсутствовали. На свариваемых изделиях из листов толщиной 4,0-6,0 мм коробления и поводки отсутствовали только для сталей составов №7-9, содержание углерода в которых не превышало 0,15%. Свариваемые элементы из стальных листов толщиной 4,0-6,0 мм с другим химическим составом теряли исходную форму из-за поводок и короблений.
Из таблиц 2 и 3 следует, что предложенная сталь (составы №2-4, №7-9, №12-14) одновременно сочетает наиболее высокие показатели термостойкости, свариваемости и бронестойкости. При этом листы из сталей составов №12-14 показали максимальную бронестойкость: стандартные тестовые испытания на непробитие выдерживали листы толщиной 7,0-7,2 мм.
Технико-экономические преимущества предложенной броневой термостойкой свариваемой мартенситной стали, поименованной авторами специальным названием БТСМ 150-200, состоят в том, что введение в ее состав 0,05-4,60% кобальта и 0,10-1,90% меди при регламентированном содержании остальных легирующих элементов и примесей позволяет одновременно повысить термостойкость, свариваемость и бронестойкость термически улучшенных горячекатаных листов. Помимо этого, в вариантах составов стали с различной концентрацией углерода достигается исключение термических поводок и короблений в процессе сваривания листов толщиной не более 6,0 мм, а также снижение толщины листов, выдерживающих стандартный тест на непробитие, до 7,0-7,2 мм. В результате снижается масса броневой защиты, или, при сохранении толщины листов, увеличивается надежность бронирования. Повышение термостойкости позволяет существенно повысить надежность строительных конструкций при пожарах, а также живучесть бронированных объектов.
В качестве базового объекта принята сталь-прототип. Использование предложенной стали повысит эффективность бронезащитных изделий и противопожарную устойчивость строительных конструкций на 15-20%.
Изготавливаемым по заявленному химическому составу сталям авторами дано специальное наименование - «Б200ТСМ».
Источники информации
1. Авт. свид. СССР №1700091, МПК С22С3 8/46, 1982 г.
2. Патент Российской Федерации №2102688, МПК F41H 5/04, 1998 г.
3. Патент Российской Федерации №2139357, МПК C21D 9/42, F41H 1/02, F41H 5/02, 1999 г. - прототип.
название | год | авторы | номер документа |
---|---|---|---|
БРОНЕВАЯ СТАЛЬ | 2011 |
|
RU2447181C1 |
СПОСОБ ДЕФОРМАЦИОННО-ТЕРМИЧЕСКОГО ПРОИЗВОДСТВА ЛИСТОВОГО ПРОКАТА | 2011 |
|
RU2481407C1 |
СПОСОБ ПРОИЗВОДСТВА СТАЛЬНЫХ ЛИСТОВ ДЛЯ ГЕТЕРОГЕННЫХ БРОНЕЗАЩИТНЫХ КОНСТРУКЦИЙ | 2010 |
|
RU2415368C1 |
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ | 2015 |
|
RU2593810C1 |
ВЫСОКОПРОЧНАЯ БРОНЕВАЯ СТАЛЬ И СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ НЕЕ | 2013 |
|
RU2520247C1 |
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВОЙ СТАЛИ | 2012 |
|
RU2499844C1 |
СПОСОБ ПРОИЗВОДСТВА СВЕРХВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ | 2014 |
|
RU2583229C9 |
СПОСОБ ПРОИЗВОДСТВА ГЕТЕРОГЕННОЙ ЛИСТОВОЙ СТАЛИ | 2012 |
|
RU2493270C1 |
СЛОИСТЫЙ БРОНЕЗАЩИТНЫЙ МАТЕРИАЛ | 2009 |
|
RU2429971C2 |
ВЫСОКОПРОЧНАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ | 2018 |
|
RU2701325C1 |
Изобретение относится к области металлургии, а именно к составам высокопрочных свариваемых сталей с повышенной термостойкостью, используемых в специальных броневых конструкциях в высокоупрочненном состоянии после закалки на мартенсит. Броневая термостойкая свариваемая мартенситная сталь (БТСМ 150-200) содержит углерод, кремний, марганец, хром, никель, молибден, серу, фосфор, кобальт, медь и железо при следующем соотношении компонентов, мас.%: углерод 0,001-0,41, кремний 0,1-2,6, марганец 0,1-1,8, хром 0,1-8,6, никель 0,1-1,9, молибден 0,1-0,6, кобальт 0,05-4,6, медь 0,1-1,9, сера не более 0,004, фосфор не более 0,008, железо остальное. Повышается термостойкость, свариваемость и бронестойкость. 2 з.п. ф-лы, 3 табл.
1. Броневая термостойкая свариваемая мартенситная сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, серу, фосфор и железо, отличающаяся тем, что она дополнительно содержит кобальт и медь при следующем соотношении компонентов, мас.%:
2. Броневая термостойкая свариваемая мартенситная сталь по п.1, отличающаяся тем, что при содержании углерода не более 0,15 мас.% она имеет следующее соотношение компонентов, мас.%:
3. Броневая термостойкая свариваемая мартенситная сталь по п.1, отличающаяся тем, что при содержании углерода более 0,15 мас.% она имеет следующее соотношение компонентов, мас.%:
KR 100340505 B1, 31.05.2002 | |||
СПОСОБ ИЗГОТОВЛЕНИЯ СТАЛЬНЫХ МОНОЛИСТОВЫХ БРОНЕЭЛЕМЕНТОВ Б 100 СТ | 1999 |
|
RU2139357C1 |
ПРОТИВОПУЛЬНАЯ ГЕТЕРОГЕННАЯ БРОНЯ ИЗ ЛЕГИРОВАННОЙ СТАЛИ ДЛЯ СРЕДСТВ ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 1994 |
|
RU2090828C1 |
Сталь | 1980 |
|
SU899704A1 |
KR 100325705 B1, 08.02.2002 | |||
Сырьевая смесь для опудривания пористого заполнителя | 1989 |
|
SU1705257A1 |
ДОЖДЕВАЛЬНАЯ УСТАНОВКА | 2010 |
|
RU2453109C2 |
СТАНОК ДЛЯ ГИБКИ ПРОФИЛЬНОГО МЕТАЛЛА | 0 |
|
SU247020A1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Топка с несколькими решетками для твердого топлива | 1918 |
|
SU8A1 |
Авторы
Даты
2010-09-27—Публикация
2008-03-03—Подача