СПОСОБ ПРОИЗВОДСТВА ГЕТЕРОГЕННОЙ ЛИСТОВОЙ СТАЛИ Российский патент 2013 года по МПК C21D9/42 F41H5/04 B32B15/18 C22C38/22 C22C38/30 

Описание патента на изобретение RU2493270C1

Изобретение относится к области металлургии, конкретно к производству двухслойного стального листового проката толщиной 4-20 мм для бронезащитных конструкций с классом защиты не ниже 6a по ГОСТ P50963-96 для легкобронированных боевых машин, летательных аппаратов, бронированных сооружений.

Броневая стойкость листовой стали оценивается по минимальной толщине листа Hн, которая полностью исключает ее пробитие при обстреле с расстояния 100 м бронебойными пулями с термоупрочненным стальным сердечником.

Известен способ производства гетерогенной (двухслойной) листовой стали, включающий сборку пакета из по меньшей мере двух листовых заготовок из легированной стали, сваривание листов взрывом, нагрев и горячую прокатку до заданной толщины [1].

Недостаток известного способа состоит в том, что гетерогенная листовая сталь имеет низкую броневую стойкость.

Ближайшим аналогом к предлагаемому изобретению является способ производства гетерогенной листовой стали, включающий получение фронтальной и тыльной листовых заготовок, нагрев до температуры 1250°C, горячую прокатку с температурой конца прокатки 850°C, закалку от температуры конца прокатки, отпуск при температуре 200°C, сварку листов по боковым сторонам. При этом фронтальная заготовка выполнена из стали, содержащей, мас.%:

Углерод 0,28-0,55 Кремний 0,15-0,30 Марганец 0,20-0,30 Хром 0,30-0,60 Никель 0,80-1,10 Молибден 0,10-0,30 Ванадий 0,05-0,15 Железо остальное,

а тыльная заготовка выполнена из стали, содержащей, мас.%:

Углерод 0,15-0,27 Кремний 0,30-0,60 Марганец 0,20-0,30 Хром 0,70-1,10 Никель 0,80-1,10 Молибден 0,10-0,30 Ванадий 0,10-0,25 Железо остальное [2].

Недостаток данного способа состоит в низкой броневой стойкости гетерогенной листовой стали.

Техническая задача, решаемая изобретением, состоит в повышении броневой стойкости.

Для решения технической задачи в известном способе производства гетерогенной листовой стали, включающем получение фронтальной и тыльной листовых заготовок, нагрев, горячую прокатку, закалку с температуры конца прокатки и отпуск, согласно изобретению перед горячей прокаткой фронтальную и тыльную листовые заготовки соединяют посредством сварки взрывом, нагрев ведут до температуры 1100-1240°C при которой выдерживают не менее 2 ч, горячую прокатку ведут с суммарным относительным обжатием по толщине не менее 60% с температурой конца прокатки 860-980°C, отпуск проводят при температуре 150-190°C, причем фронтальный слой выполняют из стали следующего химического состава, мас.%:

Углерод 0,3-0,7 Кремний 0,5-1,3 Марганец 0,4-0,7 Хром 3,0-7,0 Никель 0,1-0,7 Молибден 1,0-1,6 Ванадий 0,3-0,6 Кобальт не более 5,0 Железо и примеси Остальное,

тыльный слой выполняют из стали следующего химического состава, мас.%:

Углерод 0,2-0,4 Кремний 0,1-0,3 Марганец 0,2-0,7 Хром 1,5-2,5 Никель 3,0-6,0 Молибден 0,3-0,5 Кобальт не более 4,0 Железо и примеси Остальное.

Сущность предложенного технического решения состоит в следующем. Сварка фронтальной и тыльной заготовок взрывом обеспечивает соединение слоев по всей площади их контакта. Последующий нагрев до 1100-1240°C с выдержкой в течении не менее 2 ч увеличивает прочности соединения слоев за счет взаимной диффузии химических элементов. Это исключает нарушение сплошности контакта фронтального и тыльного слоев при горячей прокатке, а также баллистическом соударении пули с гетерогенной броневой преградой. Химический состав сталей для фронтального и тыльного слоев в высокоупрочненном состоянии после закалки с температуры конца прокатки 860-980°C и отпуска при температуре 150-190°C способствует повышению твердости фронтального слоя, а также вязкости тыльного слоя. Кобальт при необходимости дополнительно повышает их теплостойкость. Поэтому локальный адиабатический разогрев при пулевом соударении не приводит к снижению броневой стойкости гетерогенной листовой стали (как это имеет место в случае использования известного способа [2]), что увеличивает живучесть броневой конструкции в целом.

Нагрев сваренных взрывом фронтальной и тыльной заготовок до температуры ниже 1100°C и выдержка при температуре нагрева менее 2 ч не приводят к увеличению прочности соединения слоев из-за недостаточной взаимной диффузии, что не исключает их расслоения при прокатке и обстреле, обусловленного различными механическими свойствами сталей различного состава и неравномерностью их вытяжек. Увеличение температуры нагрева выше 1240°C интенсифицирует процессы собирательной рекристаллизации и окисление границ зерен в черновых проходах горячей прокатки, что снижает бронезащитные свойства готовой листовой стали.

Уменьшение относительного обжатия по толщине менее 60% приводит к формированию крупнозернистого аустенита слоев, что снижает твердость и прочность, ухудшает бронестойкость гетерогенных листов.

При температуре конца прокатки ниже 860°C не достигаются высокие твердость и прочность фронтального слоя, а увеличение температуры конца прокатки выше 980°C приводит к снижению вязкости тыльного слоя. В обоих случаях снижается броневая стойкость гетерогенной листовой стали.

При температуре отпуска ниже 150°C увеличивается склонность гетерогенной стали к образованию отколов при пулевом соударении, что недопустимо. Повышение температуры отпуска более 190°C приводит к падению твердости фронтального слоя и увеличивает вероятность пробития брони пулей с упрочненным сердечником.

Углерод упрочняет оба слоя закаленной стали. При концентрации углерода в тыльном компоненте менее 0,20% не достигается требуемая прочность и твердость, а при его концентрации более 0,40% снижаются вязкость, пластичность и бронезащитные свойства закаленной низкоотпущенной стали. Увеличение концентрации углерода более 0,70% во фронтальном слое приводит к его растрескиванию при пулевом содарении. В то же время уменьшение содержания углерода во фронтальном слое менее 0,30% не обеспечивает фрагментированное разрушение пулевого сердечника при соударении, что снижает броневую стойкость гетерогенной листовой стали.

Кремний раскисляет сталь, повышает прочность и упругость в закаленном и низкоотпущенном состоянии. Он упрочняет сталь без образования включений карбидов и нитридов, повышает устойчивость мартенсита к отпуску при локальном нагреве от соударения с пулей. При концентрации кремния менее 0,5% во фронтальном слое и менее 0,1% в тыльном слое прочность и твердость гетерогенной броневой стали ниже допустимой, а при концентрации кремния более 1,3% во фронтальном слое и более 0,3% в тыльном слое снижается пластичность и вязкость сталей, из-за чего не обеспечивается повышение броневых свойств.

Марганец раскисляет и упрочнят сталь. При его концентрации менее 0,40% во фронтальном слое и менее 0,2% в тыльном слое снижается их твердость и прочность. Увеличение концентрации марганца более 0,7% во фронтальном слое и более 0,7 в тыльном слое при наличии в них хрома хрома приводит к появлению трещин при пулевых ударах, что снижает броневую стойкость гетерогенной листовой стали.

Хром повышает прочность, вязкость и бронестойкость листовой гетерогенной стали. При его концентрации менее 3,0% во фронтальном слое и менее 1,5% в тыльном слое прочность и вязкость обоих слоев ниже допустимых значений. Увеличение содержания хрома более 7% во фронтальном слое или более 2,5% в тыльном слое приводит к потере пластичности и броневой стойкости закаленной низкоотпущенной гетерогенной листовой стали.

Никель способствует повышению пластичности и вязкости закаленной низкоотпущенной стали. Однако при его содержании более 0,7% во фронтальном слое или более 6% в тыльном слое повышается содержание остаточного аустенита в стали и ухудшаются ее броневые свойства. Снижение содержания никеля менее 0,1% во фронтальном слое или менее 3,0% в тыльном слое приводит к потере пластичности и ударной вязкости при пулевых ударах.

Молибден и ванадий благоприятно изменяют распределение вредных примесей в мартенсите, уменьшая их концентрацию по границам зерен, повышают прочность и вязкость стали, обусловливают мелкозернистость микроструктуры. При содержании молибдена менее 1,0% во фронтальном слое и менее 0,3% в тыльном слое прочностные свойства гетерогенной листовой стали ниже требуемого уровня. Увеличение содержания молибдена более 1,6% во фронтальном слое и более 0,5% в тыльном слое ухудшает пластичность и броневые свойства закаленной низкоотпущенной стали.

Ванадий усиливает упрочняющее действие молибдена во фронтальном слое без снижения его пластичности. Снижение концентрации ванадия менее 0,3% увеличивает вероятность пулевого пробития гетерогенной листовой стали. Увеличение его концентрации сверх 0,6% не исключает образование трещин во фронтальном слое при пулевых соударениях, что также снижает броневую стойкость.

Кобальт способствует дополнительной стабилизации бронезащитных свойств в условиях работы гетерогенной листовой стали при повышенных температурах (в процессе сварки, при пожаре и т.д.). Однако увеличение концентрации кобальта более 5% во фронтальном слое или более 4% в тыльном слое приводит к снижению ударной вязкости и броневой стойкости.

Примеры реализации способа

В дуговой электропечи производят выплавку сталей для фронтальных и тыльных слоев (табл.1). Выплавленные стали после рафинирования разливают в плоские заготовки толщиной Hн=30 мм.

Плоскую фронтальную заготовку из стали состава 3 (табл.1) и тыльную заготовку из стали состава 9 подвергают абразивной зачистке и осуществляют их сварку взрывом.

Полученную двухслойную заготовку толщиной H0 ~60 мм нагревают в методической печи до температуры Tн=1170°C, при которой выдерживают в

Таблица 1 Химический состав сталей для фронтальных и тыльных заготовок № состава Содержание химических элементов, мас.% C Si Mn Cr Ni Mo V Co Fe + примеси Фронтальная заготовка 1. 0,2 0,4 0,3 2,0 0,09 0,9 0,2 2,0 Остальн. 2. 0,3 0,5 0,4 3,0 0,1 1,0 0,3 3,0 -:- 3. 0,5 0,8 0,5 4,5 0,4 1,2 0,4 - -:- 4. 0,6 0,9 0,6 5,0 0,5 1,3 0,5 4,0 -:- 5. 0,7 1,3 0,7 7,0 0,7 1,6 0,6 5,0 -:- 6. 0,8 1,4 0,8 7,5 0,8 1,7 0,7 5,5 -:- Тыльная заготовка 7. 0,1 0,09 0,1 1,4 2,5 0,2 - 1,0 Остальн. 8. 0,2 0,1 0,2 1,5 3,0 0,3 - 2,0 -:- 9. 0,3 0,2 0,4 1,9 4,5 0,3 - - -:- 10. 0,3 0,3 0,5 2,0 5,2 0,4 - 3,0 -:- 11. 0,4 0,3 0,7 2,5 6,0 0,5 - 4,0 -:- 12. 0,5 0,4 0,8 2,6 6,5 0,6 - 4,5 -:-

течении времени τ=3 ч. Нагретую заготовку прокатывают на толстолистовом реверсивном стане 2000 с температурой конца прокатки Ткп=920°С в листы толщиной H1=8 мм с суммарным относительным обжатием:

ε = H 0 H 1 H 0 100% = 60 8 60 100% = 86 ,7% .

Прокатанный двухслойный гетерогенный лист при температуре конца прокатки подвергают незамедлительной закалке водой, после чего отпускают при температуре Tо=170°C.

Полученный гетерогенный лист подвергают испытанию путем обстрела с расстояния 100 м из крупнокалиберного пулемета HCB 12,7 «Утес» калибра 12,7 мм бронебойными пулями. Испытания показали, что толщина непробития составляет: Hн=8,0 мм.

Варианты реализации способа производства гетерогенной листовой стали и оценка их броневой стойкости Нн приведены в таблице 2.

Таблица 2 Деформационно-термические режимы производства двухслойных листов № п/п № состава Тн, °C τ, ч ε, % Ткп, °C То, °C Hн, мм фронт. тыльн. 1. 1 7 1090 1,8 59,0 850 140 14,2 2. 2 8 1100 2,0 60,0 860 150 8,0 3. 3 9 1170 3,0 86,7 920 170 8,0 4. 4 10 1160 3,0 86,7 920 180 8,0 5. 5 11 1240 4,0 89,4 980 190 8,0 6. 6 12 1250 4,0 57,8 990 200 13,9

Из данных, представленных в табл.2 следует, что при реализации предложенного способа (варианты №2-5) достигается повышение броневой стойкости гетерогенной листовой стали, о чем свидетельствует минимальная толщина Hн двухслойных листов, обеспечивающая непробитие при обстреле бронебойными пулями калибра 12,7 мм. В случаях запредельных значений заявленных параметров (варианты №1 и №6) броневая стойкость гетерогенной листовой стали снижается.

Технико-экономические преимущества предложенного способа состоят в том, что при сочетании предложенного химического состава стали для фронтальной и тыльной заготовок, режимов нагрева под прокатку сваренных взрывом пары заготовок, суммарного относительного обжатия при прокатке, температур закалки и отпуска достигается формирование оптимального структурно-фазового состояния в обоих слоях гетерогенных листов, благодаря чему обеспечивается наиболее высокая устойчивость к баллистическому соударению с бронебойными пулями. При этом исключаются сквозные пробои, трещины, отколы в тыльном слое. Введение в состав обеих сталей кобальта дополнительно повышает теплостойкость гетерогенных листов, что способствует повышению живучести бронеконструкции, препятствует разупрочнению стальных листов в зоне термического влияния при их электродуговой сварке.

В качестве базового объекта при определении технико-экономических преимуществ предложенного способа принят ближайший аналог [2]. Использование предложенного способа обеспечивает возможность снижения толщины гетерогенной листовой стали и массы бронеконструкции на 10-12% при условии сохранения бронезащитных свойств.

Источники информации

1. Патент Российской Федерации №2421312, МПК B23K 20/08, 2011.

2. Патент Российской Федерации №2429971, МПК B32B 15/18, 2010.

Похожие патенты RU2493270C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА СТАЛЬНЫХ ЛИСТОВ ДЛЯ ГЕТЕРОГЕННЫХ БРОНЕЗАЩИТНЫХ КОНСТРУКЦИЙ 2010
  • Бащенко Анатолий Павлович
  • Трайно Александр Иванович
  • Федоров Виктор Александрович
  • Фролов Владимир Анатольевич
RU2415368C1
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВОЙ СТАЛИ 2012
  • Вольшонок Игорь Зиновьевич
  • Трайно Александр Иванович
  • Русаков Андрей Дмитриевич
  • Никитин Валентин Николаевич
  • Маслюк Владимир Михайлович
RU2499844C1
СПОСОБ ДЕФОРМАЦИОННО-ТЕРМИЧЕСКОГО ПРОИЗВОДСТВА ЛИСТОВОГО ПРОКАТА 2011
  • Трайно Александр Иванович
  • Бащенко Анатолий Павлович
  • Фролов Владимир Анатольевич
  • Фролов Дмитрий Владимирович
  • Русаков Андрей Дмитриевич
RU2481407C1
ВЫСОКОПРОЧНАЯ БРОНЕВАЯ СТАЛЬ И СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ НЕЕ 2013
  • Толкачев Владимир Павлович
  • Булкин Николай Николаевич
  • Курохтин Василий Иванович
  • Иващенко Павел Иванович
RU2520247C1
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ 2015
  • Салганик Виктор Матвеевич
  • Полецков Павел Петрович
  • Гущина Марина Сергеевна
RU2593810C1
СПОСОБ ПРОИЗВОДСТВА СВЕРХВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ 2014
  • Чукин Михаил Витальевич
  • Салганик Виктор Матвеевич
  • Полецков Павел Петрович
  • Гущина Марина Сергеевна
RU2583229C9
СЛОИСТЫЙ БРОНЕЗАЩИТНЫЙ МАТЕРИАЛ 2013
  • Трайно Александр Иванович
  • Федоров Виктор Александрович
RU2522067C1
СЛОИСТЫЙ БРОНЕЗАЩИТНЫЙ МАТЕРИАЛ 2009
  • Бащенко Анатолий Павлович
  • Васильев Юрий Леонидович
  • Кондратович Игорь Владимирович
  • Львов Валерий Владимирович
  • Пятков Михаил Иванович
  • Трайно Александр Иванович
  • Федоров Виктор Александрович
RU2429971C2
БРОНЕВАЯ СТАЛЬ 2011
  • Трайно Александр Иванович
  • Бащенко Анатолий Павлович
  • Фролов Владимир Анатольевич
  • Федоров Виктор Александрович
RU2447181C1
ПРОТИВОПУЛЬНАЯ ГЕТЕРОГЕННАЯ БРОНЯ ИЗ ЛЕГИРОВАННОЙ СТАЛИ ДЛЯ СРЕДСТВ ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 1994
  • Кирель Леонид Александрович
  • Михайлова Ольга Михайловна
  • Журавлев Сергей Александрович
RU2090828C1

Реферат патента 2013 года СПОСОБ ПРОИЗВОДСТВА ГЕТЕРОГЕННОЙ ЛИСТОВОЙ СТАЛИ

Изобретение относится к области металлургии, конкретно к производству двухслойного стального листового проката толщиной 4-20 мм для бронезащитных конструкций с классом защиты не ниже 6a по ГОСТ P5 0963-96 для легкобронированных боевых машин, летательных аппаратов, бронированных сооружений. Для повышения броневой стойкости получают фронтальную и тыльную листовые заготовки, нагревают их до температуры 1100-1240°C и выдерживают не менее 2 ч и соединяют посредством сварки взрывом, затем проводят горячую прокатку с суммарным относительным обжатием по толщине не менее 60% с температурой конца прокатки 860-980°C и с этой температуры закаливают. После закалки проводят отпуск при температуре 150-190°C, при этом фронтальный слой выполняют из стали следующего химического состава, мас.%: 0,3-0,7 C, 0,5-1,3 Si, 0,4-0,7 Mn, 3,0-7,0 Cr, 0,1-0,7 Ni, 1,0-1,6 Mo, 0,3-0,6 V, не более 5,0 Co, Fe и примеси - остальное, а тыльный слой выполняют из стали следующего состава, мас.%: 0,2-0,4 C; 0,1-0,3 Si; 0,2-0,7 Mn; 1,5-2,5 Cr; 3,0-6,0 Ni; 0,3-0,5 Mo; не более 4,0 Co; Fe и примеси - остальное. 2 табл.

Формула изобретения RU 2 493 270 C1

Способ производства гетерогенной листовой стали, включающий получение фронтальной и тыльной листовых заготовок, нагрев, горячую прокатку, закалку с температуры конца прокатки и отпуск, отличающийся тем, что перед горячей прокаткой фронтальную и тыльную листовые заготовки соединяют посредством сварки взрывом, нагрев ведут до температуры 1100-1240°C, при которой выдерживают не менее 2 ч, горячую прокатку ведут с суммарным относительным обжатием по толщине не менее 60% с температурой конца прокатки 860-980°C, отпуск проводят при температуре 150-190°C, причем фронтальный слой выполняют из стали следующего химического состава, мас.%:
углерод 0,3-0,7 кремний 0,5-1,3 марганец 0,4-0,7 хром 3,0-7,0 никель 0,1-0,7 молибден 1,0-1,6 ванадий 0,3-0,6 кобальт не более 5,0 железо и примеси остальное


тыльный слой выполняют из стали следующего химического состава, мас.%:
углерод 0,2-0,4 кремний 0,1-0,3 марганец 0,2-0,7 хром 1,5-2,5 никель 3,0-6,0 молибден 0,3-0,5 кобальт не более 4,0 железо и примеси остальное

Документы, цитированные в отчете о поиске Патент 2013 года RU2493270C1

СПОСОБ ПРОИЗВОДСТВА СТАЛЬНЫХ ЛИСТОВ ДЛЯ ГЕТЕРОГЕННЫХ БРОНЕЗАЩИТНЫХ КОНСТРУКЦИЙ 2010
  • Бащенко Анатолий Павлович
  • Трайно Александр Иванович
  • Федоров Виктор Александрович
  • Фролов Владимир Анатольевич
RU2415368C1
ПРОТИВОПУЛЬНАЯ ГЕТЕРОГЕННАЯ БРОНЯ ИЗ ЛЕГИРОВАННОЙ СТАЛИ ДЛЯ СРЕДСТВ ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 1994
  • Кирель Леонид Александрович
  • Михайлова Ольга Михайловна
  • Журавлев Сергей Александрович
RU2090828C1
СПОСОБ КИНЕТИЧЕСКОГО НИЗКОТЕМПЕРАТУРНОГО ОТПУСКА 2006
  • Бащенко Анатолий Павлович
  • Трайно Александр Иванович
  • Завражнов Андрей Александрович
  • Кнохин Валерий Григорьевич
  • Иводитов Вадим Альбертович
  • Фролов Владимир Анатольевич
  • Александров Валерий Юрьевич
RU2304624C1
БРОНЕВАЯ СТАЛЬ И СТАЛЬНАЯ БРОНЕДЕТАЛЬ 2007
  • Гладышев Сергей Алексеевич
  • Григорян Валерий Арменакович
  • Егоров Александр Иванович
  • Галкин Михаил Петрович
  • Заря Николай Всеволодович
  • Хромушин Валерий Аркадьевич
  • Шестаков Илья Иннокентьевич
RU2353697C1
US 4645720 A, 24.02.1987
СПОСОБ ТЕПЛОСНАБЖЕНИЯ ХИМИЧЕСКОЙ КОНВЕРСИИ И СПОСОБ И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ ПРОЦЕССА ПРОИЗВОДСТВА ОЛЕФИНА 2010
  • Ромео Джозеф
  • Уилкокс Ричард Дж.
  • Рам Санджив
  • Гами Аджай
  • Браммер Роберт
RU2465954C1

RU 2 493 270 C1

Авторы

Вольшонок Игорь Зиновьевич

Трайно Александр Иванович

Русаков Андрей Дмитриевич

Даты

2013-09-20Публикация

2012-08-31Подача