СОСТАВ ДЛЯ СЕРНОГО БЕТОНА Российский патент 2012 года по МПК C04B28/36 

Описание патента на изобретение RU2448924C2

Изобретение относится к промышленности строительных материалов и может найти применение при изготовлении подземных конструкций (свай, фундаментов, подпорных стен, стен опускных колодцев, ограждающих конструкций тоннелей); элементов кровли; дорожных покрытий (бортовых камней, тротуарной плитки, сливных лотков); частей покрытий (плит, настилов, прогонов, балок, ферм, арок, рам); декоративно-художественных изделий (памятников, барельефов).

Известна серобетонная смесь, содержащая серное вяжущее, в состав которого входят сера и модификатор, причем в качестве модификатора вяжущее содержит бициклические терпены - пинен в количестве 0,1-5% от массы серы, и наполнитель - щебень фракции 5-10 мм, песок речной фракции 0,5-2,5 мм и минеральную муку при следующем соотношении компонентов наполнителя, мас.%: щебень - 40-60, песок - 20-30, минеральная мука - остальное, при этом серобетонная смесь содержит, мас.%: серное вяжущее - 5,005-31,5; наполнитель - остальное (патент RU 2306285, МПК C04D 12/00, 2007 год).

Недостатком известного способа является использование в качестве наполнителя природных материалов - щебня и песка. Во-первых, их использование предполагает трудоемкую технологию подготовки исходных материалов, которая включает поступление песка и щебня на склад, откуда они подаются раздельно в соответствующие загрузочные бункеры с ленточными питателями. Затем элеватором их подают на грохоты для отсева камней и посторонних включений, для получения щебня определенной фракции его дополнительно измельчают и совместно с песком подают в бункера-накопители, а из них в сушильный барабан. Во-вторых, песок и щебень являются заполнителями крупной фракции, выполняя в основном роль скелета, при этом незначительно влияют на основные физико-механические свойства бетона (плотность, площадь удельной поверхности). Кроме того, при использовании щебня в качестве заполнителя существуют ограничения в его составе по наличию глинистых частиц, количество которых не должно превышать 1 масс.%.

Наиболее близким к заявляемому техническому решению является состав для серных бетонов, включающий (мас.%): отход производства серной кислоты на основе серы элементарной (на сухое вещество) 56-66; песок 9-21; шламовый осадок водоосветлителей на основе карбонатов (на сухое вещество) 10-30; жидкий отход производства полистирола на основе стирола (на сухое вещество) 3-5 (патент RU 2088549, С04В 28/36, 1997 год) (прототип). При этом шламовый осадок водоосветлителей, имеющий состав, (мас.%): СаСО3 44,0÷73,0; MgCO3 4,0÷9,0; общее железо в пересчете на Fе2O3 0,5÷8,8; SiO2 4,1÷7,6; FeSO4 0,5÷2,2; Аl2О3 0,6÷1,8; получают в теплоэнергетических производствах на установках осветления (умягчения) речной воды путем известкования воды раствором Са(ОН)2 и коагуляцией раствором FeSO4 с последующим осветлением на механических фильтрах. Прочность на сжатие полученного из состава серного бетона равна 29,1÷71 МПа через 28 суток после затвердевания.

Известное техническое решение позволяет утилизировать шламовый осадок теплоэнергетических производств. Однако для улучшения общей экологической обстановки необходима утилизация различных видов шламов водоочистки и водоподготовки, скапливающихся в огромных количествах. Утилизация подобного вида шламов в качестве компонента строительных материалов, в частности бетонов, позволяет значительно расширить сырьевую базу их производства.

Перед авторами стояла задача расширения сырьевой базы для получения составов для серных бетонов, соответствующих стандартным требованиям по уровню рабочих характеристик, за счет использования новых заполнителей. При этом желательно использование шламовых отходов, обеспечивая таким образом их утилизацию.

Поставленная задача решена в предлагаемом составе для серного бетона, содержащем вяжущее, включающее серу элементарную и модификатор, заполнитель на основе шламового осадка водоочистных сооружений, который содержит в качестве шламового осадка водоочистных сооружений шлам водоподготовки для объектов муниципального водоснабжения, предварительно отожженный при 200°C, а в качестве модификатора - оксид алюминия с размером частиц 64÷73 нм при следующем соотношении компонентов (масс.%):

сера элементарная 20÷60; оксид алюминия 1,8÷2,2; шлам водоподготовки для объектов муниципального водоснабжения 38,2÷77,8

В настоящее время из патентной и научно-технической литературы неизвестен состав для серных бетонов, содержащий в качестве заполнителя шлам водоподготовки для объектов муниципального водоснабжения и наноразмерный порошок оксида алюминия в предлагаемых пределах содержания всех компонентов.

На сегодняшний день из оборудования по подготовке воды для объектов муниципального водоснабжения извлекают ежегодно порядка 152 тыс. тонн шлама. Шлам сгружается в специальные отстойники в виде отвалов для хранения и не утилизируется.

Исследования, проведенные авторами, позволили установить возможность использования шлама водоподготовки для объектов муниципального водоснабжения в качестве заполнителя в составе серного бетона. В ходе исследований необходимо было определить, что шлам соответствует требованиям, предъявляемым к материалам, используемым в качестве инертного заполнителя серных бетонов. Заполнитель, выполняющий роль структурообразователя бетона, предпочтительно должен быть тонкодисперсным материалом с удельной поверхностью не менее 0,2 м2/г, химически инертный, стойкий к агрессивным средам, обладать водонепроницаемостью, атмосферо- и морозоустойчивостью, низкой тепло- и электропроводностью. В результате проведенных исследований авторами установлено, что шлам водоподготовки для объектов муниципального водоснабжения отвечает всем необходимым требованиям. Так, в качестве заполнителя используется фракция отожженного при 200°C шлама с удельной поверхностью 42,3 м2/г. Исследования показали, что температура отжига шлама имеет существенное значение, оказывая влияние на площадь удельной поверхности частиц шлама. При снижении или увеличении температуры ниже или выше 200°C площадь удельной поверхности уменьшается (так, при отжиге при 100°C она равна 33,8 м2/г, а при 400°C и 500°C - 39,07 м2/г и 35,37 м2/г, соответственно). Экспериментальные исследования, проведенные авторами, установили возможность использования в качестве модификатора наноразмерного порошка оксида алюминия. Исследования проводились с использованием порошка оксида алюминия фазового состава γ-Аl2О3 - 30÷57% и δ-Аl2O3 - 43÷70%; с расчетной плотностью 3,47÷3,54 г/см3 и размером частиц 16÷73 нм, полученного в соответствии со способом получения наночастиц оксида металла (патент RU 2384522). В результате экспериментально установлено, что лучшие результаты по прочностной характеристике достигаются при использовании порошка с размером частиц в диапазоне 64÷73 нм. Кроме того, авторам предлагаемого технического решения необходимо было провести экспериментальные исследования по определению физико-химической совместимости компонентов состава, в частности определяющей характеристикой является способность заполнителя смачиваться жидким компонентом серного вяжущего. Экспериментальным путем было установлено, что на поверхности частиц шлама в процессе остывания серы формируются однородные кристаллиты, размеры которых значительно меньше, чем в объеме свободной серы. При оптимальной степени содержания заполнителя практически вся сера переходит в более однородное и мелкокристаллическое состояние, что и обусловливает получение достаточно высокой прочности получаемого бетона. Таким образом, существенным признаком предлагаемого технического решения является количественное содержание компонентов. Так, при содержании серы менее 20 масс.%, оксида алюминия менее 1,8 масс.%, а шлама водоочистки для объектов муниципального водоснабжения более 77,8 масс.% наблюдается снижение прочности на сжатие. При содержании серы более 60 масс.%, оксида алюминия более 2,2 масс.%, а шлама водоочистки для объектов муниципального водоснабжения менее 38,2 масс.% также наблюдается снижение прочности на сжатие.

Предлагаемое техническое решение может быть осуществлено следующим образом. В качестве исходных материалов для получения серного вяжущего используют серу техническую газовую гранулированную и наноразмерный порошок оксида алюминия, полученный по патенту RU 2384522. В качестве заполнителя используют шлам водоочистки для объектов муниципального водоснабжения. Используемый шлам предварительно отжигают при температуре 200°С и измельчают до крупности менее 0,15 мм. Смешивают серу с модификатором (оксидом алюминия) и помещают в емкость, снабженную мешалкой, нагревают до температуры 130÷135°C, выдерживают при этой температуре при непрерывном перемешивании до полного расплавления смеси. После чего в расплав добавляют предварительно нагретый и измельченный шлам водоочистки для объектов муниципального водоснабжения и тщательно перемешивают до получения гомогенной массы. Полученный серный бетон выливают в предварительно нагретые формы, механически уплотняют и охлаждают при комнатной температуре. Распалубку готовых изделий производят после остывания до 28÷30°C. Предел прочности на сжатие, плотность, пористость определяют на образцах размером 1×1×7 см. Прочность на сжатие полученных образцов соответствует средней прочности на сжатие бетона марок М400÷М550.

Предлагаемое техническое решение иллюстрируется следующими примерами.

Пример 1. Для получения серного вяжущего 20 г (20 масс.%) серы технической газовой гранулированной (ТУ 2112-096-31323949-3003) и 1,8 г (2,2 масс.%) порошка оксида алюминия с размером частиц 73 нм. В качестве заполнителя используют шлам водоподготовки для объектов муниципального водоснабжения состава, масс.%: Аl(ОН)3 - 26,8; NH4OH - 0,02; Fе(ОН)3 - 3,7; КОН - 0,4; СаСО3 - 2,2; SiO2 - 29,4; MgCO3 - 35,88; MnO - 1,1; NaOH,- 0,5. Используемый шлам предварительно отжигают при температуре 200°С в течение 2-х часов и измельчают до крупности менее 0,15 мм. Смешивают серу и оксид алюминия, помещают в емкость, снабженную мешалкой, нагревают до температуры 130°С, выдерживают при этой температуре при непрерывном перемешивании в течение 40 мин. После чего в расплав добавляют 77,8 г (77,8 масс.%) предварительно отожженного и измельченного шлама водоподготовки для объектов муниципального водоснабжения и тщательно перемешивают в течение 5 минут до получения гомогенной массы. Полученный серный бетон выливают в предварительно нагретые формы, механически уплотняют и охлаждают при комнатной температуре. Распалубку готовых изделий производят после остывания до 28÷30°С. Предел прочности на сжатие 57,28 МПа. Плотность 2,35 г/см3. Пористость (объем открытых пор, %) 3,65.

Пример 2. Для получения серного вяжущего 60 г (60 масс.%) серы технической газовой гранулированной (ТУ 2112-096-31323949-3003) и 2,2 г (1,8 масс.%) порошка оксида алюминия с размером частиц 64 нм. В качестве заполнителя используют шлам водоподготовки для объектов муниципального водоснабжения состава, масс.%: Аl(ОН)3 - 26,8; NH4OH - 0,02; Fе(ОН)3 - 3,7; КОН - 0,4; СаСО3 - 2,2; SiO2 - 29,4; MgCO3 - 35,88; MnO - 1,1; NaOH - 0,5. Используемый шлам предварительно отжигают при температуре 200°C в течение 2-х часов и измельчают до крупности менее 0,15 мм. Смешивают серу и оксид алюминия, помещают в емкость, снабженную мешалкой, нагревают до температуры 135°C, выдерживают при этой температуре при непрерывном перемешивании в течение 40 мин. После чего в расплав добавляют 38,2 г (38,2 масс.%) предварительно отожженного и измельченного шлама водоподготовки для объектов муниципального водоснабжения и тщательно перемешивают в течение 5 минут до получения гомогенной массы. Полученный серный бетон выливают в предварительно нагретые формы, механически уплотняют и охлаждают при комнатной температуре. Распалубку готовых изделий производят после остывания до 28÷30°C. Предел прочности на сжатие 40,06 МПа. Плотность 2,30 г/см3. Пористость (объем открытых пор, %) 3,94.

Таким, образом, предлагаемое техническое решение позволяет расширить сырьевую базу для получения составов для серного бетона, рабочие характеристики которого соответствуют стандартным требованиям. Кроме того, использование предлагаемого технического решения позволяет утилизировать большие объемы шламов водоподготовки для объектов муниципального водоснабжения.

Похожие патенты RU2448924C2

название год авторы номер документа
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ 2014
  • Абдрахимова Елена Сергеевна
RU2580866C1
СПОСОБ ПЕРЕРАБОТКИ ОСТАТКОВ СИНТЕЗА КАРБОНИЛЬНОГО НИКЕЛЯ 2009
  • Касиков Александр Георгиевич
  • Кшуманева Елена Сергеевна
RU2398030C1
Композиция для производства пористого заполнителя 2016
  • Абдрахимова Елена Сергеевна
RU2614339C1
СПОСОБ ПОЛУЧЕНИЯ СТАБИЛЬНОЙ СВЯЗЫВАЮЩЕЙ СЕРУ КОМПОЗИЦИИ И ПОЛУЧЕННАЯ ЭТИМ СПОСОБОМ КОМПОЗИЦИЯ 2009
  • Вагин Вячеслав Петрович
  • Кэлб Пол Д.
  • Вагин Сергей Петрович
RU2519464C2
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ 2014
  • Абдрахимова Елена Сергеевна
  • Абдрахимов Владимир Закирович
RU2568443C2
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ПОРИСТОГО ЗАПОЛНИТЕЛЯ 2014
  • Абдрахимов Владимир Закирович
  • Абдрахимова Елена Сергеевна
RU2555169C1
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ПОРИСТОГО ЗАПОЛНИТЕЛЯ 2015
  • Абдрахимова Елена Сергеевна
RU2589120C1
СПОСОБ БЕЗОТХОДНОГО СЖИГАНИЯ УГЛЕРОДНОГО ТОПЛИВА 2020
  • Зырянов Владимир Васильевич
RU2740349C1
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ 2013
  • Абдрахимова Елена Сергеевна
  • Рощупкина Ирина Юрьевна
  • Абдрахимов Владимир Закирович
  • Колпаков Александр Викторович
RU2526090C1
СПОСОБ ПОЛУЧЕНИЯ МЫШЬЯКОВОЙ КИСЛОТЫ 2008
  • Журавлев Виктор Дмитриевич
  • Васильев Виктор Георгиевич
RU2375309C1

Реферат патента 2012 года СОСТАВ ДЛЯ СЕРНОГО БЕТОНА

Изобретение относится к промышленности строительных материалов и может найти применение при изготовлении подземных конструкций - свай, фундаментов, подпорных стен, стен опускных колодцев, ограждающих конструкций тоннелей, элементов кровли, дорожных покрытий - бортовых камней, тротуарной плитки, сливных лотков, а также плит, настилов, прогонов, балок, ферм, арок, рам, декоративно-художественных изделий - памятников, барельефов.

Технический результат - утилизация отхода производства и получение бетона с низкой открытой пористостью и заданными плотностью и прочностью. Состав для серного бетона содержит вяжущее - серу элементарную и модификатор, а также заполнитель на основе шлама водоподготовки для объектов муниципального водоснабжения, предварительно отожженного при температуре 200°С и измельченного до крупности менее 0,15 мм, а в качестве модификатора - порошок оксида алюминия с размером частиц 64÷73 нм при следующем соотношении компонентов (масс.%): сера элементарная 20-60, оксид алюминия 1,2-2,2, указанный шлам водоподготовки для объектов муниципального водоснабжения 38,2-77,8. 2 пр.

Формула изобретения RU 2 448 924 C2

Состав для серного бетона, содержащий вяжущее, включающее серу элементарную и модификатор, а также заполнитель на основе шламового осадка водоочистных сооружений, отличающийся тем, что он содержит в качестве шламового осадка водоочистных сооружений шлам водоподготовки для объектов муниципального водоснабжения, предварительно отожженный при температуре 200°С и измельченный до крупности менее 0,15 мм, а в качестве модификатора - порошок оксида алюминия с размером частиц 64÷73 нм при следующем соотношении компонентов, мас.%:
сера элементарная 20-60 оксид алюминия 1,2-2,2 шлам водоподготовки для объектов муниципального водоснабжения 38,2-7,8

Документы, цитированные в отчете о поиске Патент 2012 года RU2448924C2

СОСТАВ ДЛЯ СЕРНЫХ БЕТОНОВ 1994
  • Янковский Николай Андреевич[Ua]
  • Островская Алина Ивановна[Ua]
  • Кравченко Борис Васильевич[Ua]
  • Польоха Алина Михайловна[Ua]
  • Лозовая Валентина Ивановна[Ua]
  • Литовченко Нина Ильинична[Ua]
  • Козлова Ольга Юрьевна[Ua]
  • Степанов Валерий Андреевич[Ua]
  • Гашицкий Леонид Иванович[Ua]
RU2088549C1
Сырьевая смесь для изготовления строительных изделий и конструкций 1988
  • Манербаева Фарида Дюсенбаевна
  • Сон Михаил Алексеевич
  • Оспанова Мира Шалтаевна
  • Воликов Владислав Николаевич
  • Нурпеисов Серик Канашевич
SU1669895A1
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ СЕРНОГО БЕТОНА 2007
  • Афанасьев Борис Александрович
  • Куксов Аркадий Олегович
RU2382010C2
ВЯЖУЩЕЕ 2003
  • Кухаренко Лидия Васильевна
  • Личман Нелли Викторовна
  • Никитин Иван Владимирович
RU2276115C2
JP 2005289787 A, 20.10.2005.

RU 2 448 924 C2

Авторы

Васильев Виктор Георгиевич

Владимирова Елена Владимировна

Чистякова Татьяна Сергеевна

Носов Александр Павлович

Кожевников Виктор Леонидович

Шанникова Ольга Михайловна

Осминин Александр Георгиевич

Агеева Елена Сергеевна

Медведева Дарья Сергеевна

Койтеева Марина Геннадьевна

Герасимова Екатерина Сергеевна

Даты

2012-04-27Публикация

2010-06-23Подача