ЭЛЕКТРОЛИТ НИКЕЛИРОВАНИЯ Российский патент 2012 года по МПК C25D15/00 

Описание патента на изобретение RU2449063C1

Изобретение относится к области гальванотехники, а именно к электрохимическому нанесению никеля и его сплавов на стальные детали, например, узлы трения-скольжения с получением композиционно кластерных гальванических покрытий (ККГП), и может найти применение в авиационной, автомобильной и других отраслях промышленности.

Известен электролит никелирования, имеющий следующий химический состав, г/л:

сульфат никеля 630 мл/л хлорид никеля 5 борная кислота 30 стабилизатор 0,8 лаурилсульфат 0,1 микрочастицы BN (патент США №4479855).

который может содержать микрочастицы порошков нитрида бора, карбида кремния, оксида титана, оксида алюминия дисперсностью 0,4-5 мкм.

Недостатком электролита никелирования является то, что полученные покрытия обладают низкими антифрикционными свойствами.

Известен электролит никелирования для получения композиционных электрохимических покрытий, содержащий, г/л:

сульфат никеля 220 хлорид никеля 45 ацетат натрия или калия 30 фуллерен C60 0,025-0,050 (патент РФ №2280109)

Недостатком известного электролита является низкая износостойкость получаемого покрытия.

Известен также электролит для осаждения композиционного покрытия никель - фторопласт, который содержит, г/л:

хлорид никеля 150-350 борная кислота 25-40 хлорамин Б 1,5-4,5 фторопластовая эмульсия 7-35 (патент РФ №2297476)

Недостатком известного электролита является неудовлетворительная износостойкость получаемых композиционных покрытий, т.е. они могут работать только при низких нагрузках.

Известен электролит никелирования для осаждения композиционных покрытий следующего состава, г/л:

сульфат никеля 200 хлорид никеля 40 бисульфат графита 2-10 ацетат никеля или ацетат калия 30 (патент РФ №2352695)

Недостатком известного электролита для получения покрытия является низкая износостойкость и отсутствие промышленного выпуска бисульфата графита.

Наиболее близким аналогом, взятым за прототип, является электролит никелирования, содержащий, г/л:

никель сульфаминовокислый 300-440 никель хлористый 4-15 кобальт сульфаминовокислый или железо сульфаминовокислое 12-27 борная кислота 25-40 наночастицы оксида металла групп IIIA, IVB, VB, VIB и/или карбида металла групп IVB, VB, VIB 2-100 ПАВ 0,01-0,1 вода до 1 л (патент РФ №2293803)

Наночастицы имеют дисперсность 50-200 нм и удельную поверхность 20-390 м2/г.

Недостатком прототипа является то, что покрытия, сформированные в этом электролите, не обладают достаточными антифрикционными свойствами и не обеспечивают высокой износостойкости.

Технической задачей предлагаемого изобретения является разработка электролита никелирования, обеспечивающего получение композиционно-кластерных гальванических покрытий (ККГП) на основе никеля, имеющих повышенные значения микротвердости, износостойкости и улучшенные антифрикционные свойства.

Для решения поставленной задачи предложен электролит никелирования, содержащий никель сульфаминовокислый, никель хлористый, кобальт сульфаминовокислый, борную кислоту, поверхностно-активное вещество, наночастицы оксида металла и воду, который в качестве наночастиц оксида металла содержит оксид алюминия и/или оксид циркония, а в качестве поверхностно-активного вещества -натрий лаурилсульфат и дополнительно содержит микрочастицы оксида алюминия ά и γ фазы и дисульфида молибдена при следующем соотношении компонентов, г/л:

никель сульфаминовокислый 325-440 никель хлористый 4-10 кобальт сульфаминовокислый 12-30 борная кислота 25-40 натрий лаурилсульфат 0,01-0,1 наночастицы оксида алюминия и/или оксида циркония 2-55

микрочастицы:

оксид алюминия ά и γ фазы 10-40 дисульфид молибдена 1-4 вода до 1 л

Микрочастицы оксида алюминия и дисульфида молибдена имеют дисперсность 0,5÷20 мкм.

В качестве блескообразующей добавки электролит дополнительно содержит сахарин.

Установлено, что введение в электролит микрочастиц Al2O3 ά и γ фазы, а также MoS2 способствует формированию композиционной структуры с улучшенными физико-механическими свойствами (износостойкость, микротвердость, антифрикционные свойства). При использовании микрочастиц Al2O3 β-фазы композиционное покрытие не формируется, в связи с неустойчивым фазовым состоянием данной модификации в сульфаминовокислом электролите.

Одновременное введение в электролит наночастиц оксида алюминия и/или оксида циркония и микрочастиц в виде композиции из оксида алюминия ά и γ фазы и дисульфида молибдена, обеспечивает получение поликомпозиционного самосмазывающегося покрытия, сочетающего низкий коэффициент трения - скольжения и высокую износостойкость. Частицы дисульфида молибдена вводят в композиционное покрытие для того, чтобы снизить эффект непосредственного трибологического контакта. Вследствие ориентации частиц дисульфида молибдена кристаллической плоскостью базиса параллельно направлению трения и, следовательно, действию сдвиговых деформаций, обеспечивается локализация этих деформаций в смазочном слое, что обеспечивает снижение энергетических потерь в процессе трения, поскольку сопротивление сдвигу в этих слоях существенно ниже, чем в материале подложки.

Установлено, что лаурилсульфат натрия, как поверхностно-активное вещество, поддерживает седиментационную устойчивость нано- и микрочастиц и увеличивает рассеивающую способность электролита. Электролит содержит сахарин в качестве блескообразователя.

Примеры осуществления

Пример 1

Электролит никелирования готовили путем смешивания приготовленного раствора сульфаминовокислого никеля с остальными компонентами. Оксид алюминия άи γ фазы и дисульфид молибдена вводили в электролит в виде суспензии и осаждали композиционное покрытие с применением активного барботажа электролита воздухом при вертикальном расположении анода и катода.

В качестве наночастиц оксида металла использовали оксид алюминия и/или оксид циркония.

Осаждение никелевого покрытия проводили при следующих соотношениях компонентов, г/л: никель сульфаминовокислый - 325, никель хлористый - 4, кобальт сульфаминовокислый - 12, борная кислота - 25, натрий лаурилсульфат - 0,01, сахарин - 0,5, наночастицы ZrO2 - 2, микрочастицы Al2O3 ά и γ фазы - 10, микрочастицы MoS2 - 4.

Режим осаждения: температура 42°C, рН=4,0, плотность тока 5 А/дм2.

Примеры 2, 3, 4 аналогичны примеру 1.

В таблице 1 представлены составы электролитов, где примеры 1-4 - предлагаемый состав, пример 5 - прототип.

В таблице 2 представлены физико-механические свойства (микротвердость, износостойкость) композиционно-кластерных никелевых покрытий, получаемых из предлагаемого электролита и прототипа.

Таблица 1 Составы электролитов никелирования Состав электролита, г/л 1 2 3 4 5 (прототип) Никель сульфаминовокислый 325 360 400 440 400 Никель хлористый 4 6 8 10 10 Кобальт сульфаминовокислый 12 18 24 30 20 Борная кислота 25 30 35 40 35 Натрия лаурилсульфат 0,01 0,04 0,08 0,1 0,08 Сахарин 0,5 1,5 0,8 Наночастицы, Al2O3 - 15 30 20 30 Наночастицы, ZrO2 2 - - 35 - Микрочастицы, Al2O3 ά и γ фазы / дисперсность, мкм 10/0,5 20/5 30/10 40/20 - Микрочастицы, MoS2 / дисперсность, мкм 2/5 3/10 1/20 4/0,5 -

Таблица 2 Физико-механические свойства композиционно-кластерных никелевых покрытий, получаемых из предлагаемых электролитов и прототипа № п/п Микротвердость, МПа Износостойкость в условиях сухого торцового трения Момент трения Коэфф. трения Износ, мг 1 5700 незначительное повышение в начальный период (процесс приработки) 0,46 0,7 2 6200 стабильный 0,43 0,6 3 6500 стабильный 0,42 0,6 4 5900 незначительное повышение в начальный период (процесс приработки) 0,48 0,7 5 5500 равномерное повышение в процессе трения с образованием кольцевых бороздок по всей поверхности покрытия 0,57 1,3

Полученные покрытия по внешнему виду соответствуют требованиям ГОСТ 9.301-86.

Контроль содержания микрочастиц в композиционном покрытии проводили микроскопическим способом с применением металографического метода.

Контроль прочности сцепления проводили методом нагрева по ГОСТ 3802-88. Контроль микротвердости проводили с помощью микротвердомера ПМТ-3М при нагрузке 50 г.

Контроль износостойкости и антифрикционных характеристик покрытий проводили на образцах типа Н03-264 на машине торцевого трения И-47 по СТП 1.595-14-285-9.

Как видно из таблицы 2, покрытие, получаемое из предлагаемого электролита, по сравнению с прототипом обладает повышенной на 15-20% микротвердостью, пониженным на 15-25% коэффициентом трения по стали, увеличенной более чем в 2 раза износостойкостью.

Применение предлагаемого электролита увеличит ресурс работы узлов машин и механизмов.

Похожие патенты RU2449063C1

название год авторы номер документа
ЭЛЕКТРОЛИТ НИКЕЛИРОВАНИЯ 2005
  • Жирнов Александр Дмитриевич
  • Ильин Вячеслав Александрович
  • Семенычев Валентин Владимирович
  • Нагаева Людмила Викторовна
  • Налетов Борис Павлович
RU2293803C1
Способ получения композиционного металл-алмазного покрытия на поверхности медицинского изделия, дисперсная система для осаждения металл-алмазного покрытия и способ ее получения 2020
  • Есаулов Сергей Константинович
  • Есаулова Целина Вацлавовна
  • Миняева Елена Владимировна
RU2746730C1
СПОСОБ ОСАЖДЕНИЯ ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА АЛЮМИНИЕВЫЕ СПЛАВЫ С ВЫСОКИМ СОДЕРЖАНИЕМ КРЕМНИЯ 2014
  • Каблов Евгений Николаевич
  • Семенычев Валентин Владимирович
  • Салахова Розалия Кабировна
  • Панарин Александр Витальевич
  • Тихообразов Андрей Борисович
RU2569199C1
СПОСОБ ПОЛУЧЕНИЯ ГАЛЬВАНИЧЕСКОГО КОМПОЗИЦИОННОГО ПОКРЫТИЯ НИКЕЛЬ-КОБАЛЬТ-ОКСИД АЛЮМИНИЯ И ГАЛЬВАНИЧЕСКОЕ КОМПОЗИЦИОННОЕ ПОКРЫТИЕ НИКЕЛЬ-КОБАЛЬТ-ОКСИД АЛЮМИНИЯ 2009
  • Балакай Владимир Ильич
  • Арзуманова Анна Валерьевна
  • Балакай Илья Владимирович
  • Балакай Ксения Владимировна
  • Бырылов Иван Фадиалович
RU2418107C2
Способ получения композиционного металл-дисперсного покрытия, дисперсная система для осаждения композиционного металл-дисперсного покрытия и способ ее получения 2020
  • Есаулов Сергей Константинович
  • Есаулова Целина Вацлавовна
RU2746863C1
Способ получения композиционного металл-дисперсного покрытия, дисперсная система для осаждения композиционного металл-дисперсного покрытия и способ ее получения 2020
  • Есаулов Сергей Константинович
  • Кукушкин Сергей Сергеевич
  • Светлов Геннадий Валентинович
  • Есаулова Целина Вацлавовна
RU2746861C1
ЭЛЕКТРОЛИТ НА ВОДНОЙ ОСНОВЕ ДЛЯ НИКЕЛИРОВАНИЯ ИЗДЕЛИЙ ИЗ СТАЛИ, АЛЮМИНИЯ, ТИТАНА, МЕДИ И ИХ СПЛАВОВ 2013
  • Красиков Алексей Владимирович
  • Ежов Андрей Андреевич
RU2543584C2
ЭЛЕКТРОЛИТ ДЛЯ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ НА ОСНОВЕ НИКЕЛЯ ИЛИ КОБАЛЬТА 1990
  • Новоселов А.М.
  • Данилович Ю.А.
  • Ковалев Б.Ф.
  • Костюнин А.А.
  • Трубников С.В.
  • Кокоулин Е.Л.
SU1805697A1
ЭЛЕКТРОЛИТ ДЛЯ ОСАЖДЕНИЯ КОМПОЗИЦИОННОГО ПОКРЫТИЯ НИКЕЛЬ-БОР-ОКСИД АЛЮМИНИЯ 2009
  • Балакай Владимир Ильич
  • Арзуманова Анна Валерьевна
  • Балакай Илья Владимирович
  • Балакай Ксения Владимировна
  • Бырылов Иван Фадиалович
  • Иванов Валерий Владимирович
RU2418106C2
Электролит для осаждения композиционных никелевых покрытий 1989
  • Раманаускене Даля-Барбора Казимеровна
  • Купятис Гитис-Казимерас Казевич
  • Чешунене Аста-Она Валерийоновна
SU1708944A1

Реферат патента 2012 года ЭЛЕКТРОЛИТ НИКЕЛИРОВАНИЯ

Изобретение относится к области гальванотехники и может найти применение в авиационной, автомобильной и других отраслях промышленности. Электролит содержит, г/л: никельсульфаминовокислый 325-440, никель-хлористый 4-10, кобальт сульфаминовокислый 12-30, борная кислота 25-40, натрий лаурилсульфат 0,01-0,1, наночастицы оксида алюминия и/или оксида циркония 2-55, микрочастицы оксида алюминия α и γ фазы 10-40, микрочастицы дисульфида молибдена 1-4, вода до 1 л. Технический результат: повышение микротвердости, износостойкости и антифрикционных свойств покрытий. 2 з.п. ф-лы, 2 табл., 5 пр.

Формула изобретения RU 2 449 063 C1

1. Электролит никелирования, содержащий никель сульфаминовокислый, никель хлористый, кобальт сульфаминовокислый, борную кислоту, поверхностно-активное вещество, наночастицы оксида металла и воду, отличающийся тем, что в качестве наночастиц оксида металла он содержит наночастицы оксида алюминия и/или оксида циркония, а в качестве поверхностно-активного вещества - натрий лаурилсульфат, при этом дополнительно содержит микрочастицы оксида алюминия α- и γ-фазы и дисульфида молибдена при следующем соотношении компонентов, г/л:
никель сульфаминовокислый 325-440 никель хлористый 4-10 кобальт сульфаминовокислый 12-30 борная кислота 25-40 натрий лаурилсульфат 0,01-0,1 наночастицы оксида алюминия и/или оксида циркония 2-55 микрочастицы оксида алюминия α- и γ-фазы 10-40 микрочастицы дисульфида молибдена 1-4 вода до 1 л

2. Электролит никелирования по п.1, отличающийся тем, что микрочастицы оксида алюминия и дисульфида молибдена имеют дисперсность 0,5÷20 мкм.

3. Электролит никелирования по п.1, отличающийся тем, что он дополнительно содержит в качестве блескообразующей добавки сахарин.

Документы, цитированные в отчете о поиске Патент 2012 года RU2449063C1

ЭЛЕКТРОЛИТ НИКЕЛИРОВАНИЯ 2005
  • Жирнов Александр Дмитриевич
  • Ильин Вячеслав Александрович
  • Семенычев Валентин Владимирович
  • Нагаева Людмила Викторовна
  • Налетов Борис Павлович
RU2293803C1
СПОСОБ ПОЛУЧЕНИЯ НАНОМОДИФИЦИРОВАННОГО ГАЛЬВАНИЧЕСКОГО НИКЕЛЕВОГО ПОКРЫТИЯ 2009
  • Ткачев Алексей Григорьевич
  • Мищенко Сергей Владимирович
  • Литовка Юрий Владимирович
  • Дьяков Игорь Алексеевич
  • Кузнецова Ольга Александровна
  • Ткачев Максим Алексеевич
RU2411309C2
RU 2009113190 А, 20.10.2010
СПОСОБ ПОЛУЧЕНИЯ ЧЕТВЕРТИЧНЫХ СОЛЕЙ ТЕНИЛФОСФОНИЯ 0
  • Иностранец Питер Ф. Эпштейн
SU368753A1

RU 2 449 063 C1

Авторы

Ильин Вячеслав Александрович

Семёнычев Валентин Владимирович

Салахова Розалия Кабировна

Налетов Борис Павлович

Тихообразов Андрей Борисович

Даты

2012-04-27Публикация

2011-04-05Подача