СПОСОБ СОСТАВЛЕНИЯ ЛЕДОВЫХ КАРТ Российский патент 2012 года по МПК G01C11/04 

Описание патента на изобретение RU2449245C2

Изобретение относится к области картографии, а более конкретно к составлению ледовых карт, полученных путем съемки ледовых образований, посредством технических средств, установленных на летательных аппаратах.

При составлении ледовых карт спутниковые изображения интерпретируются визуально.

Информация о морских льдах заносится в базы данных в виде растровых графических и векторных цифровых ледовых карт. Основным назначением ледовых карт является максимально точное отображение пространственного распределения и характеристик ледяного покрова на морях, а именно зон различной общей сплоченности, частной сплоченности возрастных стадий льда, ледяных полей, каналов, разводий и других явлений и образований.

Известные способы составления ледовых карт (см. Научные исследования в Арктике. Том 3. Дистанционное зондирование морских льдов на северном морском пути: изучение и применение / Йоханнессен О.М., Александров В.Ю., Фролов И.Е. и др. Спб: Наука, 2007. с.238-244.) включают получение спутниковых изображений ледовых полей, операции сегментации и интерпретации изображений, а также картирование, выполняемые экспертами на основе визуального интерактивного анализа и глазомерных количественных оценок.

Электронная ледовая карта формируется как совокупность слоев, представляющих распределение данных о состоянии ледяного покрова. В зависимости от геометрических свойств определяемых объектов слои данных могут быть следующих типов: полигоны (участки), линии или точки. В слоях полигонного типа представляются основные (зоны припая и дрейфующего льда различной сплоченности и/или возраста) и дополнительные зоны распределения льда. В слоях линейного типа представляется информация о распределении объектов ледяного покрова, таких как трещины, каналы и т.д. В слоях точечного типа представляются объекты, которые слишком малы для нанесения на карту реального масштаба, такие как стамухи, айсберги и т.д.

Интерактивное картирование ледовой обстановки реализовано на языке программирования Avenue в геоинформационной системе Arc View, которая обеспечивает географическую привязку и трансформирование изображений с AVHRR NOAA в единую стереографическую проекцию, формирование частных изображений или мозаик нескольких изображений, создание привязочного, так называемого world-файла.

Каждый слой электронной ледовой карты записывается в формате отдельного шейп-файла. Структура атрибутивных данных включает различные коды зимней и летней цветовой заливки ледовых зон разной общей сплоченности и коды для стадий развития льда. Каждый объект слоя связан с атрибутивными данными посредством уникального идентификатора, что позволяет устанавливать связь между пространственными свойствами ледового объекта, или полигона, и его характеристиками.

Для построения ледовых карт по многоканальным спутниковым изображениям AVHRR NOAA в качестве основных используются изображения тех спектральных каналов или их комбинаций, которые наиболее информативны и на которых в меньшей степени сказывается влияние помех от облачности и атмосферной дымки. Результирующее изображение синтезируется на основе квазицветного изображения (RGB).

Процедуры интерпретации РСА-изображений и картирования льдов основаны на субъективном анализе и оценках. Поэтому желательна автоматизированная интерпретация основных характеристик морских льдов по спутниковым изображениям, таких как возрастные виды льдов и их сплоченность.

Данная необходимость обусловлена тем, что при переносе изображений контурных точек с фотоснимка на топографическую карту (см. а.с. СССР №1271198), включающем выявление изменений в положении контурных точек на местности, определение масштаба переноса изображений, выявляется невысокая степень достоверности сохранения графического подобия линейных изображений, так как при изменении масштаба карты с воспроизведением линейных изображений по контурным точкам снижается геометрическая точность расположения линий.

Отображение двумерных распределений в непрерывную полутоновую форму с дальнейшим их представлением в форме линий эквидистант, путем оптического моделирования с кодирование цифровых значений признаков в заданной точке планшета оптическими символами в виде равновеликих пятен с оптической плотностью, пропорциональной величине признака (см. а.с. СССР №640113), также не решает в полном объеме данную проблему несмотря на, что за счет кодирования цифровых значений признаков в заданной точке планшета оптическими символами в виде равновеликих пятен с оптической плотностью, пропорциональной величине признака, обеспечивается возможность восстановить детали географических объектов.

Однако при переносе оптических символов с последующим отображением двумерных распределений в непрерывную полутоновую форму с дальнейшим их представлением в форме линий эквидистант через параметры генерализации, которыми являются радиусы эквидистант преимущественно при малых масштабах, уменьшается геометрическая точность расположения деталей географических объектов, что снижает достоверность картографического отображения.

Задачей заявляемого технического решения является повышение достоверности картографического отображения ледовых полей при его переносе с изменением масштаба.

Поставленная задача достигается за счет того, что в способе составления ледовых карт, включающем получение спутниковых изображений ледовых полей, операции сегментации и интерпретации изображений, картирование с выполнением интерактивного анализа и количественных оценок, кодирование изображений в виде символов, символы представляют как внутренние точки ледового поля, каждую внутреннюю точку ледового поля определяют в виде вещественных плановых координат, оси которых направлены на восток и север соответственно, снятые с фотоснимка вещественные плановые координаты внутренних точек ледовых полей и линий эквидистант наносят на вновь изготовляемый планшет или карту, определяют по коэффициентам всплеск-разложения и наносят по заданному масштабу карты генерализованную кривую, определение характеристик состояния ледовой поверхности выполняют путем сравнения полученных картографических изображений с полученными ранее за аналогичный предыдущий сезонный период посредством аналогичных технических средств.

Выбор символов в виде внутренних точек ледовых полей и определение кодированных цифровых значений через вещественные плановые координаты, направленные на восток и север, соответственно, построение линий эквидистант и генерализованной кривой по коэффициентам всплеск-разложения для заданного масштаба карты позволяют восстановить детали географических объектов и формы линий эквидистант с сохранением геометрической точности их расположения на оригинале, а соответственно и на местности.

Определение характеристик подстилающей поверхности (сплоченность, возраст льда) путем сравнения полученных картографических изображений с полученными изображениями за предыдущий сезонный период посредством эквивалентных технических средств позволяет исключить неоднозначности при анализе картографического материала.

Совокупность новых признаков из известного уровня техники не выявлена, что позволяет сделать вывод о соответствии заявляемого технического предложения условию патентоспособности «изобретательский уровень».

Сущность предлагаемого способа поясняется чертежом.

На фиг.1 представлена блок-схема формирования геопространственной информации для визуализации требуемой области пространства ледяного образования.

На фиг.1 позициями обозначены: структура XML 1, которая включает схему формирования геопространственных данных в структуре XML 3, ответные файлы структуры XML 5, базу данных в Интернете 4. Браузер 6 включает загрузочный файл структуры HTML 7, узел контроля JavaScript 8, интерпретатор декларативного языка SVG 9, интерпретатор данных в формате VRML 10, схему конвертации XSL-T 11.

Способ осуществляется следующим образом.

Каждая внутренняя точка ледового поля определяется в виде Z=Х+Y, где Х и Y - вещественные плановые координаты внутренних точек географических объектов, в том числе, и внутренних точек линий эквидистант. При этом ось Х направлена на восток, а ось Y - на север.

Снятые с фотоснимка вещественные плановые координаты внутренних точек ледовых полей и линий эквидистант наносят на вновь изготовляемый планшет или карту.

По заданному масштабу (разрешению) карты наносят генерализованную кривую, которая определяется в соответствии с зависимостью:

f(х)=1/Cg-∞db0da/a2ga,b(х)Tg(a,b),

где Tg (a, b) - коэффициенты всплеск-разложения,

b - сдвиг, а - растяжение, Сg - фрактальный множитель.

При этом выполняются следующие действия: сегментация (разделение линейного объекта по геометрическим показателям - кривизна, фрактальная размерность, фрактальный множитель), упрощение (уменьшение количества внутренних точек линии), сглаживание (уменьшение кривизны линии), смещение (части линии или некоторых точек линии), утрирование (утверждение или исключение отдельных элементов, не выражающихся в уменьшенном масштабе карты).

Для определения характеристик состояния ледовой поверхности полученный картографический материал сравнивают с полученным ранее посредством аналогичных технических средств (радиолокационной станции бокового обзора, радиометра и оптического сканера) картографическим материалом для данного района исследований за аналогичный предыдущий сезонный период времени. При этом предыдущий картографический материал подвергают преобразованию аналогичным способом, что и полученный вновь.

При визуализации требуемой области пространства ледяного образования данные для VRML интерпретатора 10 (фиг.1) формируются в оперативной памяти компьютера вычислительного устройства с последующей загрузкой в интерпретатор. Для чего в загрузочный VRML файл включен узел JavaScript 8, функции которого контролируют область видимого пространства. Программными инструментами для картографической визуализации служат структуры данных в формате SVG, который поддерживает векторные и растровые данные. Отображение в браузере 6 данных в формате SVG осуществляется интерпретатором декларативного языка SVG 9. Данные в структуре SVG формируются аналогично формированию данных в формате VRML. На основе данных в структуре XML (геопространственная информация), получаемых от базы данных по запросу, проводится конвертация в памяти браузера 6 в структуру SVG с помощью XSL-T 11. Для одновременного представления геопространственных данных в двумерном и трехмерном виде осуществляется поддержка синхронизации навигации по той и другой сцене. На картографической сцене отображается прямоугольник, соответствующий текущей области пространства, данные о которой загружены в память интерпретатора VRML 10. Синхронизация со стороны SVG осуществляется на основе функций JavaScript, встроенных в SVG 9 и HTML 7. Так как синхронизацию со стороны VRML осуществить сложнее, то в загрузочный файл VRML 10 включен узел JavaScript 8 с навигационными функциями, не позволяющими трехмерному изображению выходить за рамки окна зрения и постоянно отслеживающими координаты окна зрения. Эти координаты служат необходимой информацией для синхронизации с картографической сценой, которая возможна с использованием таймера HTML 7.

Система навигации построена с использованием альтернативного по отношению известной технологии GA принципа организации точки наблюдения трехмерной сцены, в которой используется стандартный принцип - точка наблюдения расположена вне сцены и при навигации сцена неподвижна, а изменяются координаты точки наблюдения и угол наблюдения. При этом центр вращения явно не определяется, что и является одной из причин потери изображения при навигации. В предлагаемой технологии точка наблюдения находится постоянно в центре окна наблюдения и визуализируется небольшим трехгранником осей, а начало трехгранника всегда является центром вращения изображения и при навигации сцена перемещается относительно этого центра.

Реализация данного способа технической трудности не представляет так, как при его осуществлении могут быть использованы известные технические средства как получения первичной информации, так и для ее обработки, применяемые для решения аналогичных задач.

Похожие патенты RU2449245C2

название год авторы номер документа
СПОСОБ СОСТАВЛЕНИЯ ЛЕДОВЫХ КАРТ 2011
  • Жуков Юрий Николаевич
  • Чернявец Владимир Васильевич
RU2432547C1
СПОСОБ СЪЕМКИ НИЖНЕЙ ПОВЕРХНОСТИ ЛЕДЯНОГО ПОКРОВА 2010
  • Воронин Василий Алексеевич
  • Тарасов Сергей Павлович
  • Жуков Юрий Николаевич
  • Аносов Виктор Сергеевич
  • Суконкин Сергей Яковлевич
  • Павлюченко Евгений Евгеньевич
  • Бродский Павел Григорьевич
  • Леньков Валерий Павлович
  • Чернявец Владимир Васильевич
  • Жильцов Николай Николаевич
RU2444760C1
СПОСОБ ВОССТАНОВЛЕНИЯ РЕЛЬЕФА МОРСКОГО ДНА ПРИ ИЗМЕРЕНИЯХ ГЛУБИН ПОСРЕДСТВОМ ГИДРОАКУСТИЧЕСКИХ СРЕДСТВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Алексеев Сергей Петрович
  • Курсин Сергей Борисович
  • Бродский Павел Григорьевич
  • Ставров Константин Георгиевич
  • Леньков Валерий Павлович
  • Чернявец Владимир Васильевич
  • Жуков Юрий Николаевич
  • Аносов Виктор Сергеевич
  • Воронин Василий Алексеевич
  • Тарасов Сергей Павлович
RU2429507C1
СПОСОБ СЪЕМКИ РЕЛЬЕФА ДНА АКВАТОРИИ И УСТРОЙСТВО ДЛЯ СЪЕМКИ РЕЛЬЕФА ДНА АКВАТОРИИ 2012
  • Курсин Сергей Борисович
  • Травин Сергей Викторович
  • Бродский Павел Григорьевич
  • Ставров Константин Георгиевич
  • Абрамов Александр Михайлович
  • Жуков Юрий Николаевич
  • Зеньков Андрей Федорович
  • Леньков Валерий Павлович
  • Чернявец Владимир Васильевич
RU2519269C1
СПОСОБ СЪЕМКИ РЕЛЬЕФА ДНА АКВАТОРИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Курсин Сергей Борисович
  • Добротворский Александр Николаевич
  • Бродский Павел Григорьевич
  • Ставров Константин Георгиевич
  • Жильцов Николай Николаевич
  • Леньков Валерий Павлович
  • Чернявец Владимир Васильевич
  • Аносов Виктор Сергеевич
  • Жуков Юрий Николаевич
  • Воронин Василий Алексеевич
  • Тарасов Сергей Павлович
RU2434246C1
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ЛЬДИН И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТОЛЩИНЫ ЛЬДИН 2010
  • Курсин Сергей Борисович
  • Воронин Василий Алексеевич
  • Тарасов Сергей Павлович
  • Чернявец Владимир Васильевич
  • Бродский Павел Григорьевич
  • Леньков Валерий Павлович
  • Жильцов Николай Николаевич
  • Аносов Виктор Сергеевич
  • Жуков Юрий Николаевич
RU2435136C1
СПОСОБ СОСТАВЛЕНИЯ НАВИГАЦИОННЫХ КАРТ 2005
  • Жуков Юрий Николаевич
  • Опарин Александр Борисович
  • Гавриленко Сергей Михайлович
  • Чернявец Владимир Васильевич
  • Федоров Александр Анатольевич
RU2302037C1
Способ определения состояния ледяного покрова 2016
  • Чернявец Владимир Васильевич
RU2635332C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДРЕЙФА МОРСКИХ ЛЬДОВ 2010
  • Курсин Сергей Борисович
  • Бродский Павел Григорьевич
  • Леньков Валерий Павлович
  • Жильцов Николай Николаевич
  • Димитров Владимир Иванович
  • Дикарев Виктор Иванович
  • Чернявец Владимир Васильевич
  • Румянцев Юрий Владимирович
  • Аносов Виктор Сергеевич
RU2416070C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДРЕЙФА МОРСКИХ ЛЬДОВ И СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ ДРЕЙФА МОРСКИХ ЛЬДОВ 2010
  • Курсин Сергей Борисович
  • Воронин Василий Алексеевич
  • Тарасов Сергей Павлович
  • Чернявец Владимир Васильевич
  • Бродский Павел Григорьевич
  • Леньков Валерий Павлович
  • Жильцов Николай Николаевич
  • Аносов Виктор Сергеевич
  • Жуков Юрий Николаевич
  • Румянцев Юрий Владимирович
RU2453865C1

Реферат патента 2012 года СПОСОБ СОСТАВЛЕНИЯ ЛЕДОВЫХ КАРТ

Изобретение относится к области картографии и может быть использовано при составлении ледовых карт. Сущность: получают спутниковые изображения ледовых полей. Сегментируют и интерпретируют изображения. Выполняют картирование с интерактивным анализом и количественными оценками. Кодируют изображения в виде символов. При этом символы представляют как внутренние точки ледового поля. Определяют каждую внутреннюю точку ледового поля в виде вещественных плановых координат, оси которых направлены на восток и север. Снятые с фотоснимка вещественные плановые координаты внутренних точек ледовых полей и линий эквидистант наносят на вновь изготовляемый планшет или карту. Определяют по коэффициентам всплеск-разложения генерализованную кривую, наносят ее по заданному масштабу карты. Определяют характеристики состояния ледовой поверхности. Для этого сравнивают полученные картографические изображения с полученными ранее за аналогичный предыдущий сезонный период посредством аналогичных технических средств. Технический результат: повышение достоверности картографического отображения ледовых полей. 1 ил.

Формула изобретения RU 2 449 245 C2

Способ составления ледовых карт, включающий получение спутниковых изображений ледовых полей, операции сегментации и интерпретации изображений, картирование с выполнением интерактивного анализа и количественных оценок, кодирование изображений в виде символов, отличающийся тем, что символы представляют как внутренние точки ледового поля, определяют каждую внутреннюю точку ледового поля в виде вещественных плановых координат, оси которых направлены на восток и север соответственно, снятые с фотоснимка вещественные плановые координаты внутренних точек ледовых полей и линий эквидистант наносят на вновь изготовляемый планшет или карту, определяют по коэффициентам всплеск-разложения и наносят по заданному масштабу карты генерализованную кривую, определение характеристик состояния ледовой поверхности выполняют путем сравнения полученных картографических изображений с полученными ранее за аналогичный предыдущий сезонный период посредством аналогичных технических средств.

Документы, цитированные в отчете о поиске Патент 2012 года RU2449245C2

RU 2004107164 А, 27.09.2005
СПОСОБ СОСТАВЛЕНИЯ НАВИГАЦИОННЫХ КАРТ 2005
  • Жуков Юрий Николаевич
  • Опарин Александр Борисович
  • Гавриленко Сергей Михайлович
  • Чернявец Владимир Васильевич
  • Федоров Александр Анатольевич
RU2302037C1
RU 2004107138 A, 20.09.2005
Способ картографического отображения двумерных распределений, заданных в цифровой форме 1975
  • Гольбрайх Исаак Германович
  • Миркин Георгий Рахменович
SU640113A1

RU 2 449 245 C2

Авторы

Алексеев Сергей Петрович

Бродский Павел Григорьевич

Шалагин Николай Николаевич

Жуков Юрий Николаевич

Чернявец Владимир Васильевич

Аносов Виктор Сергеевич

Даты

2012-04-27Публикация

2010-02-24Подача