СПОСОБ МОНИТОРИНГА КОРРОЗИОННОГО СОСТОЯНИЯ ТРУБОПРОВОДА Российский патент 2012 года по МПК G01N27/02 

Описание патента на изобретение RU2449264C1

Изобретение относится к области эксплуатации подземных и наземных металлических трубопроводов, а именно - к мониторингу их коррозионного состояния.

Вследствие коррозионных процессов уменьшается толщина стенок трубопровода, а следовательно, увеличивается их электрическое сопротивление. По изменению этого сопротивления при каждом последующем измерении судят о степени коррозионного износа стенок трубопровода.

Известен способ мониторинга коррозионного состояния трубопровода (патент US №4587479, МПК G01R 27/02, приоритет 06.05.1986 г.), включающий измерение электрического сопротивления воспринимающего элемента датчика, размещенного внутри трубопровода и установленного в отверстии, выполненном в стенке трубопровода. По изменению электрического сопротивления элемента датчика судят о степени разрушающего воздействия рабочих технологических сред на материал трубопровода. Термокомпенсацию измерения производят путем сравнения измеряемого сопротивления с сопротивлением эталонного элемента (эталонного резистора), установленного в отверстии, выполненном в стенке трубопровода.

Недостатком известного способа является сложная система оценки степени коррозионного износа стенок трубопровода. Кроме того, снижается точность измерения, вследствие использования данных об изменении сопротивления материала датчика, которые лишь косвенно отражают реальную степень износа материала трубопровода. Другой недостаток заключается в необходимости нарушения целостности стенки трубопровода для установки датчиков на всей его длине.

Известен наиболее близкий заявляемому изобретению способ мониторинга коррозионного состояния трубопровода (патент RU №2244297, МПК G01N 27/02, опубликован 10.01.2005 г.), включающий разбивку обследуемого трубопровода на смежные мерные участки, откапывание шурфов на границах участков, установку в шурфе в краевых зонах (на границах) участка двух измерительных потенциальных электродов с измерительным устройством (микроомметром) и двух токовых электродов с проводом токового питания, пропускание стабильного тока через краевую зону мерного участка и через весь мерный участок, проведение измерений падения напряжения, определение удельного сопротивления металла в краевой зоне данного участка. Полученное удельное сопротивление металла данного участка используют в качестве эталонной характеристики электрического сопротивления этого участка трубопровода. С его учетом проводят вычисление базовой характеристики электрического сопротивления данного участка с предполагаемой минимально допустимой толщиной стенки используемых труб. Далее, согласно известному способу, проводят измерение разности потенциалов на всей длине мерного участка по четырехэлектродной схеме и определяют текущую характеристику электрического сопротивления данного участка. Затем проводят сравнение текущей характеристики электрического сопротивления данного участка с базовой характеристикой электрического сопротивления участка для оценки степени коррозионного износа материала трубопровода на данном конкретном мерном участке трубопровода. После этого демонтируют потенциальные электроды, а также комплект токовых электродов и измерительных приборов и переносят их на следующий мерный участок для измерения его электрических параметров.

Недостатком известного способа является сложность получения данных о коррозионном износе на всей длине трубопровода, так как он требует определения своей эталонной характеристики сопротивления металла трубы для каждого мерного участка и измерения толщины стенки и наружного диаметра трубы в краевых зонах каждого участка в отдельности. Кроме того, ввиду различной реальной толщины стенки и диаметра трубы на разных участках трубопровода, известный способ требует вычисления удельных сопротивлений (эталонных характеристик) для каждого участка в отдельности. Другой недостаток известного способа заключается в его трудоемкости, которая обусловлена необходимостью установки сначала на первом мерном участке четырех потенциальных электродов, а также комплекта токовых электродов и измерительных приборов, а затем переноса их с первого мерного участка трубопровода на следующий для их нового монтажа. При этом известный способ не обеспечивает необходимую точность измерения, так как не предусматривает термокомпенсацию измерений. Все указанные недостатки известного способа существенно затрудняют проведение оперативного мониторинга коррозии трубопровода.

Задачей изобретения является упрощение процесса определения коррозионного износа на всей длине трубопровода при обеспечении температурной компенсации измерений, а также снижение трудоемкости процесса измерений.

Поставленная задача решается тем, что в способе мониторинга коррозионного состояния трубопровода, включающем разбивку трубопровода на мерные участки, установку на границах участка измерительных потенциальных электродов с измерительным устройством, установку токовых электродов с проводом токового питания, пропускание стабильного тока через провод токового питания для проведения измерений, измерение падения напряжения на мерном участке, определение эталонной характеристики электрического сопротивления металла трубопровода, определение базовой характеристики электрического сопротивления мерного участка, определение текущей характеристики электрического сопротивления участка, сравнение текущей характеристики электрического сопротивления участка с базовой характеристикой электрического сопротивления участка для оценки степени коррозионного износа материала трубопровода, согласно изобретению, установку измерительных потенциальных электродов с измерительным устройством осуществляют стационарно на границах всех мерных участков, установку токовых электродов осуществляют стационарно в начале и в конце обследуемого трубопровода, определение эталонной характеристики электрического сопротивления металла трубопровода осуществляют с помощью резистора сравнения, установленного в непосредственном тепловом контакте с первым участком трубопровода, стабильный ток для проведения измерений пропускают одновременно через все мерные участки и через резистор сравнения, измеряют падение напряжения на всех мерных участках и на резисторе сравнения, вычисляют отношение падения напряжения на каждом мерном участке к падению напряжения на резисторе сравнения и указанное отношение падения напряжения, численно равное отношению электрического сопротивления каждого мерного участка к электрическому сопротивлению резистора сравнения, принимают в качестве базовой характеристики электрического сопротивления каждого мерного участка при первоначальном измерении и в качестве текущей характеристики электрического сопротивления каждого мерного участка при последующих измерениях, произведенных после истечения периода времени, заданного регламентом мониторинга, а оценку степени коррозионного износа материала трубопровода производят по разности значений текущей и базовой характеристик мерных участков, определяемой по зависимости:

,

где Un и U0 - падение напряжения на n-ом мерном участке и резисторе сравнения, соответственно, при первоначальном измерении; U'n и U'0 - падение напряжения на n-ом мерном участке и резисторе сравнения, соответственно, при последующих измерениях, произведенных после истечения периода времени, заданного регламентом мониторинга; Xn - величина, характеризующая степень коррозионного износа, численно равная отношению абсолютного изменения электрического сопротивления n-го мерного участка, приведенного к температуре 0°C, к электрическому сопротивлению резистора сравнения при температуре 0°C, то есть

,

где ΔRn - абсолютное изменение сопротивления n-го мерного участка, приведенное к температуре 0°C; R0 - сопротивление резистора сравнения при температуре 0°C.

Технический результат изобретения выражается в существенном упрощении процесса определения коррозионного износа трубопровода за счет использования только одного неизменного эталонного значения электрического сопротивления R0 для всех мерных участков.

Сущность изобретения поясняется чертежом, на котором показана схема, реализующая предлагаемый способ. На схеме представлено соединение и расположение измерительных устройств и проводов токового питания на участках обследуемого трубопровода.

Предлагаемый способ осуществляется следующим образом.

Обследуемый металлический трубопровод 1 разбивают на смежные и примерно равные по длине мерные участки L. В начале первого участка и в конце последнего участка, а также на каждой границе соседних участков стационарно устанавливают измерительные потенциальные электроды, обеспечивающие надежный электрический контакт с материалом трубопровода 1. Потенциальные электроды соединяют проводами с измерительными устройствами (например, вольтметрами) для измерения падения напряжения, которые устанавливают стационарно по одному на каждом мерном участке, как показано на схеме. Перед началом первого мерного участка и после границы последнего мерного участка обследуемого трубопровода 1 устанавливают стационарно токовые электроды и соединяют их между собой проводом 2 токового питания с подключением источника тока I для создания стабильного измерительного тока, одинакового для всех мерных участков. В разрыв провода 2 токового питания стационарно включают резистор сравнения 3 (для термокомпенсации), выполненный из материала, имеющего одинаковый температурный коэффициент сопротивления с материалом трубопровода 1. Резистор сравнения 3 защищают от воздействия атмосферы, располагают в непосредственном тепловом с первым участком трубопровода 1, благодаря чему резистор 3 имеет одинаковую с ним температуру. К резистору сравнения 3 подключают измерительное устройство (например, вольтметр) для измерения падения напряжения на нем.

Для определения базовых (первоначальных) и текущих характеристик сопротивления каждого мерного участка производят следующие действия.

1. В заданное время на весь период измерения через все мерные участки трубопровода 1 одновременно пропускают стабильный ток I - переменный, постоянный или чередующейся полярности.

2. Производят первоначальное измерение падения напряжения U0, U1, U2, … Un соответственно на резисторе сравнения 3 и на каждом мерном участке трубопровода 1.

3. Находят следующие отношения падения напряжений

.

4. Значения найденных при первоначальном измерении отношений падения напряжений на мерных участках являются исходными и их запоминают и используют в качестве базовых характеристик сопротивления каждого мерного участка.

5. При последующих измерениях, произведенных после истечения периода времени, заданного регламентом мониторинга, вновь проводят измерение падения напряжения U'0, U'1 U'2, … U'n на резисторе сравнения 3 и на каждом мерном участке трубопровода 1 и затем, повторяя действия по пунктам 1-3, находят отношения напряжений, значения которых запоминают и принимают в качестве текущей характеристики электрического сопротивления каждого мерного участка от первого до последнего

.

6. Сравнивают одноименные отношения падения напряжения, полученные при первоначальном и последующих измерениях, и по их разнице судят о степени коррозионного износа каждого мерного участка за прошедший регламентный период мониторинга:

где Un и U0 - падение напряжения на n-ом мерном участке и резисторе сравнения 3, соответственно, при первоначальном измерении; U'n и U'0 - падение напряжения на n-ом мерном участке и резисторе сравнения 3, соответственно, при последующих измерениях, произведенных после истечения периода времени, заданного регламентом мониторинга; Xn - величина, характеризующая степень коррозионного износа, численно равная отношению абсолютного изменения электрического сопротивления n-го мерного участка, приведенного к температуре 0°C, к электрическому сопротивлению резистора сравнения 3 при температуре 0°C, то есть

где ΔRn - абсолютное изменение сопротивления n-го мерного участка, приведенное к температуре 0°C; R0 - сопротивление резистора сравнения 3 при температуре 0°C.

Обоснованием приведенных выше зависимостей служат следующие пояснения.

Значения электрического сопротивления резистора сравнения 3 и каждого мерного участка, измеренные при температуре Т, будут равны

………………………………

где R1, R2, … Rn - значения электрического сопротивления мерных участков при температуре 0°C; а - линейный температурный коэффициент электрического сопротивления; Т - реальная температура, выраженная в °C, резистора сравнения 3 и мерных участков трубопровода 1, которая может испытывать изменения, например, сезонные; R0 - значение электрического сопротивления резистора сравнения 3 при 0°C, которое является неизменным по величине независимо от периода измерения и температуры окружающей среды.

Отношение сопротивлений первого участка и резистора сравнения 3

после сокращений позволяет получить следующее выражение

Таким образом, данное выражение (6) показывает, что отношение падений напряжения на первом мерном участке и резисторе сравнения 3 дает не зависящее от величины тока и температуры отношение их сопротивлений, которое используют в качестве базовой характеристики электрического сопротивления первого мерного участка.

Поступая аналогичным образом с результатами измерений на других мерных участках трубопровода 1, по отношению падения напряжений на каждом мерном участке к падению напряжения на резисторе сравнения 3 последовательно получают весь ряд базовых характеристик их электрического сопротивления, которые численно равны отношению падения напряжения на соответствующих мерных участках к падению напряжения на резисторе сравнения 3:

После истечения периода времени, заданного регламентом мониторинга, производят последующие измерения и получают новые значения падения напряжения на резисторе сравнения 3 и на всех мерных участках

и вычисляют описанным выше методом текущие характеристики электрического сопротивления всех мерных участков обследуемого трубопровода 1, численно равные:

Сравнивают текущие характеристики (9) электрического сопротивления мерных участков с базовыми характеристиками электрического сопротивления этих участков (7) для оценки степени коррозионного износа материала трубопровода и по их разности получают относительное изменение сопротивления каждого мерного участка, которое несет информацию об изменении толщины стенки трубопровода 1:

…………………………

где R'n - текущее значение электрического сопротивления n-го участка, полученное после истечения периода времени, заданного регламентом мониторинга; Rn - базовое значение электрического сопротивления n-го участка, полученное при первоначальном измерении; ΔRn - значение разности между R'n и Rn, приведенное к температуре 0°C и являющееся показателем абсолютного изменения сопротивления n-го мерного участка; R0 - сопротивление резистора сравнения 3 при температуре 0°C.

Предлагаемое изобретение по сравнению с прототипом позволяет проводить оперативный мониторинг коррозии трубопровода по всей его длине благодаря стационарному размещению на каждом мерном участке комплекта измерительных устройств и потенциальных электродов. При этом обеспечивается температурная компенсация погрешности измерений. Кроме того, требования к стабилизации тока относятся к его стабильности на время очередного измерения, а не к его абсолютной величине. Также значительно сокращаются затраты времени на проведение очередного цикла измерений. Появляется возможность ведения непрерывного мониторинга, не зависящего от погодных условий за счет автоматизации процесса измерения с использованием компьютерных технологий.

Похожие патенты RU2449264C1

название год авторы номер документа
СПОСОБ ОБНАРУЖЕНИЯ КОРРОЗИОННЫХ ПОВРЕЖДЕНИЙ НА ПОДЗЕМНЫХ ТРУБОПРОВОДАХ 2003
  • Созонов П.М.
  • Кудрявцев В.В.
  • Демаков М.В.
  • Потанин А.С.
RU2244297C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ДЕФЕКТОСКОПИИ ВНУТРЕННИХ ЗАЩИТНО-ИЗОЛЯЦИОННЫХ ПОКРЫТИЙ ТРУБОПРОВОДОВ 2018
  • Наянзин Анатолий Николаевич
RU2704517C1
СПОСОБ И УСТРОЙСТВО ДЛЯ СКАНИРУЮЩЕЙ ДЕФЕКТОСКОПИИ ВНУТРЕННИХ ЗАЩИТНО-ИЗОЛЯЦИОННЫХ ПОКРЫТИЙ ТРУБОПРОВОДОВ 2019
  • Наянзин Анатолий Николаевич
RU2702408C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ДЕФЕКТОСКОПИИ ВНУТРЕННИХ ЗАЩИТНО-ИЗОЛЯЦИОННЫХ ПОКРЫТИЙ ДЕЙСТВУЮЩИХ ПРОМЫСЛОВЫХ ТРУБОПРОВОДОВ 2017
  • Наянзин Анатолий Николаевич
RU2679042C2
Способ защиты от коррозии подземного трубопровода 2020
  • Гилёв Олег Аркадьевич
  • Рогачев Максим Вячеславович
RU2746108C1
СПОСОБ МОНИТОРИНГА КОРРОЗИИ ТРУБОПРОВОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Гончаров Валерий Александрович
RU2459136C2
Устройство для измерения удельной электропроводности жидких сред 1990
  • Веревкин Валерий Иванович
  • Быстров Валерий Александрович
  • Беляев Владимир Матвеевич
  • Воронцов Павел Иванович
SU1800350A1
СПОСОБ ОПРЕДЕЛЕНИЯ СРОКА ВЫВОДА В РЕМОНТ АНОДНОГО ЗАЗЕМЛЕНИЯ 2019
  • Агиней Руслан Викторович
  • Исупова Екатерина Владимировна
  • Александров Олег Юрьевич
  • Александров Юрий Викторович
RU2721250C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ПРОТЕЧКИ ТЕПЛОТРАССЫ 2014
  • Ямилев Ильгиз Амирович
  • Вакутин Андрей Алексеевич
RU2566112C2
Устройство для измерения электропроводности жидких сред 1990
  • Веревкин Валерий Иванович
  • Быстров Валерий Александрович
  • Беляев Владимир Матвеевич
  • Воронцов Павел Иванович
SU1762262A1

Иллюстрации к изобретению RU 2 449 264 C1

Реферат патента 2012 года СПОСОБ МОНИТОРИНГА КОРРОЗИОННОГО СОСТОЯНИЯ ТРУБОПРОВОДА

Способ согласно изобретению включает разбивку трубопровода на мерные участки, стационарное присоединение на границах каждого участка измерительных потенциальных электродов с измерительным устройством и токовых электродов с проводом токового питания, который стационарно присоединяют в начале и в конце обследуемого трубопровода. В непосредственном тепловом контакте с первым мерным участком устанавливают резистор сравнения для определения эталонной характеристики электрического сопротивления металла трубопровода. Пропускают через все мерные участки и через резистор сравнения стабильный ток. Измеряют падение напряжения на всех мерных участках и на резисторе сравнения, вычисляют отношение падения напряжения на каждом мерном участке к падению напряжения на резисторе сравнения и указанное отношение падения напряжения, численно равное отношению электрического сопротивления каждого мерного участка к электрическому сопротивлению резистора сравнения, принимают в качестве базовой характеристики электрического сопротивления каждого мерного участка при первоначальном измерении и в качестве текущей характеристики электрического сопротивления каждого мерного участка при последующих измерениях, произведенных после истечения периода времени, заданного регламентом мониторинга. Оценку степени коррозионного износа материала трубопровода производят по разности значений текущей и базовой характеристик мерных участков. Изобретение может быть использовано для мониторинга коррозионного состояния подземных и наземных трубопроводов. Изобретение обеспечивает упрощение и ускорение процесса определения коррозионного износа трубопровода. 1 ил.

Формула изобретения RU 2 449 264 C1

Способ мониторинга коррозионного состояния трубопровода, включающий разбивку трубопровода на мерные участки, установку на границах участка измерительных потенциальных электродов с измерительным устройством, установку токовых электродов с проводом токового питания, пропускание стабильного тока через провод токового питания для проведения измерений, измерение падения напряжения на мерном участке, определение эталонной характеристики электрического сопротивления металла трубопровода, определение базовой характеристики электрического сопротивления мерного участка, определение текущей характеристики электрического сопротивления участка, сравнение текущей характеристики электрического сопротивления участка с базовой характеристикой электрического сопротивления участка для оценки степени коррозионного износа материала трубопровода, отличающийся тем, что установку измерительных потенциальных электродов с измерительным устройством осуществляют стационарно на границах всех мерных участков, установку токовых электродов осуществляют стационарно в начале и в конце обследуемого трубопровода, определение эталонной характеристики электрического сопротивления металла трубопровода осуществляют с помощью резистора сравнения, установленного в непосредственном тепловом контакте с первым участком трубопровода, стабильный ток для проведения измерений пропускают одновременно через все мерные участки и через резистор сравнения, измеряют падение напряжения на всех мерных участках и на резисторе сравнения, вычисляют отношение падения напряжения на каждом мерном участке к падению напряжения на резисторе сравнения и указанное отношение падения напряжения, численно равное отношению электрического сопротивления каждого мерного участка к электрическому сопротивлению резистора сравнения, принимают в качестве базовой характеристики электрического сопротивления каждого мерного участка при первоначальном измерении и в качестве текущей характеристики электрического сопротивления каждого мерного участка при последующих измерениях, произведенных после истечения периода времени, заданного регламентом мониторинга, а оценку степени коррозионного износа материала трубопровода производят по разности значений текущей и базовой характеристик мерных участков, определяемой по зависимости:
.
где Un и U0 - падение напряжения на n-ом мерном участке и резисторе сравнения соответственно при первоначальном измерении; U'n и U'0 - падение напряжения на n-м мерном участке и резисторе сравнения соответственно при последующих измерениях, произведенных после истечения периода времени, заданного регламентом мониторинга; Xn - величина, характеризующая степень коррозионного износа, численно равная отношению абсолютного изменения электрического сопротивления n-го мерного участка, приведенного к температуре 0°C, к электрическому сопротивлению резистора сравнения при температуре 0°C, то есть,
,
где ΔRn - абсолютное изменение сопротивления n-го мерного участка, приведенное к температуре 0°С; R0 - сопротивление резистора сравнения при температуре 0°С.

Документы, цитированные в отчете о поиске Патент 2012 года RU2449264C1

СПОСОБ ОБНАРУЖЕНИЯ КОРРОЗИОННЫХ ПОВРЕЖДЕНИЙ НА ПОДЗЕМНЫХ ТРУБОПРОВОДАХ 2003
  • Созонов П.М.
  • Кудрявцев В.В.
  • Демаков М.В.
  • Потанин А.С.
RU2244297C1
СПОСОБ КОНТРОЛЯ ТЕКУЩЕГО СОСТОЯНИЯ И ОБНАРУЖЕНИЯ ОТСЛОЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ ЗАГЛУБЛЕННЫХ ИЛИ ПОДПОВЕРХНОСТНЫХ ТРУБОПРОВОДОВ И ДРУГИХ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ 1993
  • Луиджи Ривола[It]
  • Себастиано Ди Либерто[It]
  • Джакомо Капителли[It]
  • Луцио Ди Бьязе[It]
RU2104440C1
KR 20030067108 A, 14.08.2003
WO 9401757 A1, 20.01.1994.

RU 2 449 264 C1

Авторы

Бакман Владимир Константинович

Быков Сергей Павлович

Иншаков Дмитрий Викторович

Кузнецов Кирилл Анатольевич

Юрайдо Борис Францевич

Даты

2012-04-27Публикация

2011-01-11Подача