СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ МАТЕРИАЛА Российский патент 2012 года по МПК G01R27/26 

Описание патента на изобретение RU2449300C1

Изобретение относится к измерительной технике, в частности к измерению диэлектрической проницаемости материала опорных стержней для ламп бегущей волны и других подобных приборов.

Способ основан на использовании двух неперестраиваемых резонаторов с осевыми отверстиями разных размеров для ввода контролируемых стержней, которые позволяют переразложить операторы возмущенных собственных функций и собственных значений исходных замкнутых полых резонаторов с диэлектриком по обращенным операторам частично заполненных измеряемым диэлектриком полуоткрытых измерительных резонаторов, один из которых удовлетворяет условиям теории «малых возмущений», а другой - нет.

Это позволяет правильно определять количество дополнительных резонаторов, требуемых для исключения погрешности определения диэлектрической проницаемости за счет излучения энергии из резонаторов в отверстия по предполагаемому поперечному сечению измеряемого стержня и его предполагаемой диэлектрической проницаемости, а также получить явные интерполяционные формулы, включающие измерения в разных резонаторах.

Известные резонаторные методы неразрушающего контроля диэлектрической проницаемости материалов сводятся к измерению параметров пустого и заполненного (частично заполненного) резонатора, на базе которых и вычисляются диэлектрические свойства контролируемых материалов.

При этом существующие соотношения требуют либо тонких вычислительных процессов, либо применения явных простых формул первого приближения теории «малых возмущений», вызывающих, однако, такие размерные ограничения контролируемых образцов (особенно в коротковолновой части сантиметрового диапазона электромагнитных волн), что метод становится совершенно непригодным для практики.

Так, например, для наиболее простых и явных формул первого приближения Боргниса [1] (в наших обозначениях)

где ε', ε'' - действительная и мнимая части диэлектрической проницаемости ε=ε'-jε'';

- тангенс угла диэлектрических потерь стержня радиусом r1, помещенного в пустой цилиндрический ТМ010-резонатор с резонансной частотой f0 и приведенной расстройкой частоты Δf0/f0, вызвавшего в нем изменение резонансной частоты и приведенной расстройки до значений f11 и Δf11/f11 соответственно,

существует серьезное ограничение, связывающее максимально допустимый радиус r1max стержня на данной частоте (т.е. при данном радиусе пустого резонатора R) с предполагаемым значением ε' диэлектрического материала в виде [2]

где . Здесь с - скорость света, f0 - резонансная частота пустого ТМ010-резонатора правильной цилиндрической формы поперечного сечения с радиусом R.

Это приближенное ограничение, например, для частот выше 10 ГГц и материалов с ε'>6 требует слишком малого радиуса r1max стержней, вплоть до 0,4 мм, что заметно повышает процент сломанных стержней в процессе их измерений.

В формулах (1) и (2):

- изменение приведенной резонансной частоты резонатора при внесении стержня радиусом r1;

- приведенный радиус стержня в резонаторе радиусом R;

- изменение приведенной расстройки пустого резонатора до расстройки .

Для ламп бегущей волны со спиральной замедляющей системой в качестве опорных изолирующих стержней обычно применяют теплопроводный низкопотерный материал в виде стержней протяженной длины (кратной 3-4 высотам измерительного резонатора), свойства которого необходимо оценивать на стержнях радиусом, большим по сечению, чем сечения, рекомендуемые ограничением (3).

Целью данного изобретения является ослабление ограничительного условия «малости возмущения» (3) самого чувствительного к диэлектрическим потерям доминантного ТМ010-вида колебаний измерительного неперестраиваемого резонатора, предназначенного для измерений стержней с приведенным радиусом .

Технический результат достигается с помощью перехода к двум неперестраиваемым резонаторам, настроенным на одну и ту же частоту f0 и расстройку Δf0, и двух калибровочных стержней с «охватывающими» измеряемые стержни приведенными радиусами и причем калибровочный стержень, вводимый в отверстие первого резонатора, имеет приведенный радиус , который удовлетворяет ограничительному условию (3), а калибровочный стержень второго резонатора, у которого приведенный радиус - нет, при этом , причем в качестве основного измерительного резонатора используется второй резонатор.

На основе формул второго приближения обращенного оператора возмущения резонаторов для «охватывающих» приведенных радиусов калибровочных стержней и линейной интерполяции в интервале получаем явные формулы для измерения партии стержней с приведенным радиусом в резонаторе с большими отверстиями под калибровочный стержень , характеризующийся изменением резонансной частоты и приведенной расстройкой .

При этом для стержня с приведенным радиусом S будем иметь и .

В вышеприведенных обозначениях рабочими формулами являются

причем

Источники информации

1. Borgnis F. Die elektrische Grundschwingumg des kreiszylindrischen Zweischichten-Hohlraum. Hochfrequenztechnik und Elektroakustik, 1942, Bd 59, Heft 1, Seiten 22-26.

2. Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. - М.: ГИФМЛ, 1963. Стр.102.

Похожие патенты RU2449300C1

название год авторы номер документа
СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ФЕРРОМАГНИТНЫХ ЧАСТИЦ В ЖИДКОСТИ 1995
  • Дмитриев Дмитрий Александрович
  • Суслин Михаил Алексеевич
  • Кораблев Игорь Васильевич
  • Герасимов Борис Иванович
RU2084887C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ КРИВОЛИНЕЙНОГО СЛОЯ МАТЕРИАЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Вторушин Борис Александрович
  • Ева Игорь Васильевич
  • Егоров Виктор Николаевич
  • Крылов Виталий Петрович
  • Никишов Сергей Степанович
  • Ромашин Владимир Гаврилович
  • Хамицуаев Анатолий Степанович
RU2365926C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ОБЪЕМНОЙ ДОЛИ ЖИДКОЙ ФАЗЫ В ПОТОКЕ ГАЗОЖИДКОСТНОЙ СМЕСИ ПРИРОДНОГО ГАЗА 2009
  • Москалев Игорь Николаевич
  • Вышиваный Иван Григорьевич
  • Костюков Валентин Ефимович
  • Почтин Петр Алексеевич
  • Беляев Вадим Борисович
  • Тихонов Александр Борисович
  • Морев Вячеслав Алексеевич
RU2397479C1
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ОБЪЕМНЫХ ДОЛЕЙ ЖИДКОГО УГЛЕВОДОРОДНОГО КОНДЕНСАТА И ВОДЫ В ПОТОКЕ ГАЗОЖИДКОСТНОЙ СМЕСИ ПРИРОДНОГО ГАЗА 2005
  • Вышиваный Иван Григорьевич
  • Костюков Валентин Ефимович
  • Москалев Игорь Николаевич
  • Орехов Юрий Иванович
  • Тихонов Александр Борисович
  • Беляев Вадим Борисович
RU2289808C2
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ НЕФТЕПРОДУКТА 2006
  • Ахобадзе Гурам Николаевич
RU2325632C1
СВЧ-РЕЗОНАТОРНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ОБЪЕМНОЙ ДОЛИ ВЛАГИ В ЖИДКИХ СРЕДАХ 2007
  • Суслин Михаил Алексеевич
RU2334217C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАСХОДА ГАЗА НА ОСНОВЕ РОТАМЕТРА 2010
  • Вышиваный Иван Григорьевич
  • Москалев Игорь Николаевич
  • Седаков Андрей Юлиевич
RU2436049C1
СПОСОБ ИЗМЕРЕНИЯ ОТНОСИТЕЛЬНОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ЖИДКИХ СРЕД НА СВЧ 2001
  • Жалковский Э.И.
  • Ковылов Н.Б.
RU2202804C2
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ЭЛЕКТРОФИЗИЧЕСКИХ ПАРАМЕТРОВ ТОНКИХ ПЛОСКИХ ПЛЕНОК ИЗ НЕМАГНИТНОГО ИМПЕДАНСНОГО ИЛИ ПРОВОДЯЩЕГО МАТЕРИАЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Яковенко Николай Андреевич
  • Левченко Антон Сергеевич
RU2284533C1
СВЧ-СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ И ТОЛЩИНЫ ПОКРЫТИЙ НА МЕТАЛЛЕ 2014
  • Волков Виталий Витальевич
  • Кардашев Генрих Арутюнович
  • Суслин Михаил Алексеевич
RU2552106C1

Реферат патента 2012 года СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ МАТЕРИАЛА

Изобретение относится к измерительной технике, в частности к измерению диэлектрической проницаемости материала опорных стержней для ламп бегущей волны. Техническим результатом является ослабление ограничительного условия «малости возмущения» самого чувствительного к диэлектрическим потерям доминантного ТМ010-вида колебаний измерительного неперестраиваемого резонатора, предназначенного для измерений стержней с приведенным радиусом , где R - радиус пустого резонатора, r1max - максимально допустимый радиус стержня на данной частоте, r - радиус измеряемого стержня. Определение диэлектрической проницаемости опорных стержней для ламп бегущей волны проводят с помощью двух неперестраиваемых резонаторов, настроенных на одну и ту же частоту f0 и расстройку Δf0, и двух калибровочных стержней с «охватывающими» измеряемые стержни приведенными радиусами S1 первого резонатора и S2 второго резонатора.

Формула изобретения RU 2 449 300 C1

Способ определения диэлектрической проницаемости материала, например опорных стержней для лампы бегущей волны, включающий измерения на двух неперестраиваемых частично открытых цилиндрических ТМ010-резонаторах, настроенных на одну и ту же частоту f0 и расстройку Δf0, с двумя калибровочными стержнями, причем стержень, вводимый в отверстие первого резонатора, имеет приведенный радиус

(где - радиус каждого резонатора, здесь с - скорость света, f0 - резонансные частоты пустых резонаторов)
меньший, чем величина
(где ε' - действительная часть диэлектрической проницаемости ε=ε'-j·ε''), причем стержень, вводимый в отверстие второго резонатора, имеет приведенный радиус , больший, чем та же величина , при а в качестве основного измерительного резонатора используется второй резонатор и определение диэлектрической проницаемости измеряемых стержней с приведенными радиусами осуществляется по формулам, справедливым в интервале приведенных радиусов калибровочных стержней .

Документы, цитированные в отчете о поиске Патент 2012 года RU2449300C1

СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ КРИВОЛИНЕЙНОГО СЛОЯ МАТЕРИАЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Вторушин Борис Александрович
  • Ева Игорь Васильевич
  • Егоров Виктор Николаевич
  • Крылов Виталий Петрович
  • Никишов Сергей Степанович
  • Ромашин Владимир Гаврилович
  • Хамицуаев Анатолий Степанович
RU2365926C1
Способ контроля параметров диэлектриков, имеющих цилиндрическую форму 1988
  • Коваленко Алексей Григорьевич
  • Кошпаренок Владимир Николаевич
  • Майстренко Юрий Васильевич
  • Мележик Петр Николаевич
  • Поединчук Анатолий Ефимович
  • Шестопалов Виктор Петрович
SU1589220A1
RU 2003991 C1, 30.11.1993
Открытый резонатор для измерения параметров диэлектриков при нагреве 1990
  • Литовченко Алексей Васильевич
  • Шатунов Владимир Анатольевич
SU1800334A1
US 5811973 A1, 28.06.1996
JP 200426641 A1, 24.09.2004
Способ определения диэлектрической проницаемости 1989
  • Крылов Виталий Петрович
  • Скрипников Валерий Николаевич
  • Маков Алексей Иванович
SU1707570A1
Измеритель параметров диэлектрических материалов 1989
  • Крылов Виталий Петрович
  • Скрипников Валерий Николаевич
  • Скоробогат Лев Исакович
SU1651238A1
Устройство для измерения комплексной диэлектрической проницаемости материалов на СВЧ 1989
  • Филиппов Юрий Федорович
  • Харьковский Сергей Николаевич
SU1626136A1
Устройство для измерения параметров диэлектриков 1986
  • Коваленко Алексей Григорьевич
  • Кошпаренок Владимир Николаевич
  • Майстренко Юрий Васильевич
  • Шестопалов Виктор Петрович
SU1401404A1
Способ определения диэлектрической проницаемости 1989
  • Крылов Виталий Петрович
  • Скрипников Валерий Николаевич
  • Маков Алексей Иванович
SU1707570A1

RU 2 449 300 C1

Авторы

Шалаев Борис Васильевич

Данилов Андрей Борисович

Ильина Елена Моисеевна

Даты

2012-04-27Публикация

2010-08-31Подача