Изобретение относится к измерительной технике, в частности к измерению диэлектрической проницаемости материала опорных стержней для ламп бегущей волны и других подобных приборов.
Способ основан на использовании двух неперестраиваемых резонаторов с осевыми отверстиями разных размеров для ввода контролируемых стержней, которые позволяют переразложить операторы возмущенных собственных функций и собственных значений исходных замкнутых полых резонаторов с диэлектриком по обращенным операторам частично заполненных измеряемым диэлектриком полуоткрытых измерительных резонаторов, один из которых удовлетворяет условиям теории «малых возмущений», а другой - нет.
Это позволяет правильно определять количество дополнительных резонаторов, требуемых для исключения погрешности определения диэлектрической проницаемости за счет излучения энергии из резонаторов в отверстия по предполагаемому поперечному сечению измеряемого стержня и его предполагаемой диэлектрической проницаемости, а также получить явные интерполяционные формулы, включающие измерения в разных резонаторах.
Известные резонаторные методы неразрушающего контроля диэлектрической проницаемости материалов сводятся к измерению параметров пустого и заполненного (частично заполненного) резонатора, на базе которых и вычисляются диэлектрические свойства контролируемых материалов.
При этом существующие соотношения требуют либо тонких вычислительных процессов, либо применения явных простых формул первого приближения теории «малых возмущений», вызывающих, однако, такие размерные ограничения контролируемых образцов (особенно в коротковолновой части сантиметрового диапазона электромагнитных волн), что метод становится совершенно непригодным для практики.
Так, например, для наиболее простых и явных формул первого приближения Боргниса [1] (в наших обозначениях)
где ε', ε'' - действительная и мнимая части диэлектрической проницаемости ε=ε'-jε'';
- тангенс угла диэлектрических потерь стержня радиусом r1, помещенного в пустой цилиндрический ТМ010-резонатор с резонансной частотой f0 и приведенной расстройкой частоты Δf0/f0, вызвавшего в нем изменение резонансной частоты и приведенной расстройки до значений f11 и Δf11/f11 соответственно,
существует серьезное ограничение, связывающее максимально допустимый радиус r1max стержня на данной частоте (т.е. при данном радиусе пустого резонатора R) с предполагаемым значением ε' диэлектрического материала в виде [2]
где . Здесь с - скорость света, f0 - резонансная частота пустого ТМ010-резонатора правильной цилиндрической формы поперечного сечения с радиусом R.
Это приближенное ограничение, например, для частот выше 10 ГГц и материалов с ε'>6 требует слишком малого радиуса r1max стержней, вплоть до 0,4 мм, что заметно повышает процент сломанных стержней в процессе их измерений.
В формулах (1) и (2):
- изменение приведенной резонансной частоты резонатора при внесении стержня радиусом r1;
- приведенный радиус стержня в резонаторе радиусом R;
- изменение приведенной расстройки пустого резонатора до расстройки .
Для ламп бегущей волны со спиральной замедляющей системой в качестве опорных изолирующих стержней обычно применяют теплопроводный низкопотерный материал в виде стержней протяженной длины (кратной 3-4 высотам измерительного резонатора), свойства которого необходимо оценивать на стержнях радиусом, большим по сечению, чем сечения, рекомендуемые ограничением (3).
Целью данного изобретения является ослабление ограничительного условия «малости возмущения» (3) самого чувствительного к диэлектрическим потерям доминантного ТМ010-вида колебаний измерительного неперестраиваемого резонатора, предназначенного для измерений стержней с приведенным радиусом .
Технический результат достигается с помощью перехода к двум неперестраиваемым резонаторам, настроенным на одну и ту же частоту f0 и расстройку Δf0, и двух калибровочных стержней с «охватывающими» измеряемые стержни приведенными радиусами и причем калибровочный стержень, вводимый в отверстие первого резонатора, имеет приведенный радиус , который удовлетворяет ограничительному условию (3), а калибровочный стержень второго резонатора, у которого приведенный радиус - нет, при этом , причем в качестве основного измерительного резонатора используется второй резонатор.
На основе формул второго приближения обращенного оператора возмущения резонаторов для «охватывающих» приведенных радиусов калибровочных стержней и линейной интерполяции в интервале получаем явные формулы для измерения партии стержней с приведенным радиусом в резонаторе с большими отверстиями под калибровочный стержень , характеризующийся изменением резонансной частоты и приведенной расстройкой .
При этом для стержня с приведенным радиусом S будем иметь и .
В вышеприведенных обозначениях рабочими формулами являются
причем
Источники информации
1. Borgnis F. Die elektrische Grundschwingumg des kreiszylindrischen Zweischichten-Hohlraum. Hochfrequenztechnik und Elektroakustik, 1942, Bd 59, Heft 1, Seiten 22-26.
2. Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. - М.: ГИФМЛ, 1963. Стр.102.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ФЕРРОМАГНИТНЫХ ЧАСТИЦ В ЖИДКОСТИ | 1995 |
|
RU2084887C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ КРИВОЛИНЕЙНОГО СЛОЯ МАТЕРИАЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2365926C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ОБЪЕМНОЙ ДОЛИ ЖИДКОЙ ФАЗЫ В ПОТОКЕ ГАЗОЖИДКОСТНОЙ СМЕСИ ПРИРОДНОГО ГАЗА | 2009 |
|
RU2397479C1 |
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ОБЪЕМНЫХ ДОЛЕЙ ЖИДКОГО УГЛЕВОДОРОДНОГО КОНДЕНСАТА И ВОДЫ В ПОТОКЕ ГАЗОЖИДКОСТНОЙ СМЕСИ ПРИРОДНОГО ГАЗА | 2005 |
|
RU2289808C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ НЕФТЕПРОДУКТА | 2006 |
|
RU2325632C1 |
СВЧ-РЕЗОНАТОРНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ОБЪЕМНОЙ ДОЛИ ВЛАГИ В ЖИДКИХ СРЕДАХ | 2007 |
|
RU2334217C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАСХОДА ГАЗА НА ОСНОВЕ РОТАМЕТРА | 2010 |
|
RU2436049C1 |
СПОСОБ ИЗМЕРЕНИЯ ОТНОСИТЕЛЬНОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ЖИДКИХ СРЕД НА СВЧ | 2001 |
|
RU2202804C2 |
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ЭЛЕКТРОФИЗИЧЕСКИХ ПАРАМЕТРОВ ТОНКИХ ПЛОСКИХ ПЛЕНОК ИЗ НЕМАГНИТНОГО ИМПЕДАНСНОГО ИЛИ ПРОВОДЯЩЕГО МАТЕРИАЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2284533C1 |
СВЧ-СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ И ТОЛЩИНЫ ПОКРЫТИЙ НА МЕТАЛЛЕ | 2014 |
|
RU2552106C1 |
Изобретение относится к измерительной технике, в частности к измерению диэлектрической проницаемости материала опорных стержней для ламп бегущей волны. Техническим результатом является ослабление ограничительного условия «малости возмущения» самого чувствительного к диэлектрическим потерям доминантного ТМ010-вида колебаний измерительного неперестраиваемого резонатора, предназначенного для измерений стержней с приведенным радиусом , где R - радиус пустого резонатора, r1max - максимально допустимый радиус стержня на данной частоте, r - радиус измеряемого стержня. Определение диэлектрической проницаемости опорных стержней для ламп бегущей волны проводят с помощью двух неперестраиваемых резонаторов, настроенных на одну и ту же частоту f0 и расстройку Δf0, и двух калибровочных стержней с «охватывающими» измеряемые стержни приведенными радиусами S1 первого резонатора и S2 второго резонатора.
Способ определения диэлектрической проницаемости материала, например опорных стержней для лампы бегущей волны, включающий измерения на двух неперестраиваемых частично открытых цилиндрических ТМ010-резонаторах, настроенных на одну и ту же частоту f0 и расстройку Δf0, с двумя калибровочными стержнями, причем стержень, вводимый в отверстие первого резонатора, имеет приведенный радиус
(где - радиус каждого резонатора, здесь с - скорость света, f0 - резонансные частоты пустых резонаторов)
меньший, чем величина
(где ε' - действительная часть диэлектрической проницаемости ε=ε'-j·ε''), причем стержень, вводимый в отверстие второго резонатора, имеет приведенный радиус , больший, чем та же величина , при а в качестве основного измерительного резонатора используется второй резонатор и определение диэлектрической проницаемости измеряемых стержней с приведенными радиусами осуществляется по формулам, справедливым в интервале приведенных радиусов калибровочных стержней .
СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ КРИВОЛИНЕЙНОГО СЛОЯ МАТЕРИАЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2365926C1 |
Способ контроля параметров диэлектриков, имеющих цилиндрическую форму | 1988 |
|
SU1589220A1 |
RU 2003991 C1, 30.11.1993 | |||
Открытый резонатор для измерения параметров диэлектриков при нагреве | 1990 |
|
SU1800334A1 |
US 5811973 A1, 28.06.1996 | |||
JP 200426641 A1, 24.09.2004 | |||
Способ определения диэлектрической проницаемости | 1989 |
|
SU1707570A1 |
Измеритель параметров диэлектрических материалов | 1989 |
|
SU1651238A1 |
Устройство для измерения комплексной диэлектрической проницаемости материалов на СВЧ | 1989 |
|
SU1626136A1 |
Устройство для измерения параметров диэлектриков | 1986 |
|
SU1401404A1 |
Способ определения диэлектрической проницаемости | 1989 |
|
SU1707570A1 |
Авторы
Даты
2012-04-27—Публикация
2010-08-31—Подача