СПОСОБ КУЛЬТИВИРОВАНИЯ ФОТОТРОФОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2012 года по МПК C12N1/12 C12M1/02 C12M1/36 C12M1/42 

Описание патента на изобретение RU2450049C2

Изобретение относится к области биотехнологии, в частности к способам культивирования фототрофов, и может быть использован для культивирования фототрофов со снижением энергозатрат и с одновременной биологической регенерацией воздуха в системах жизнеобеспечения (СЖО), в промышленных, бытовых и сельскохозяйственных помещениях и получением биологически активных веществ (БАВ) для пищевой, косметической, химической промышленности и сельского хозяйства.

Культивирование фототрофов с наименьшими затратами на освещение, при постоянно повышающихся ценах на энергоресурсы и ухудшением экологической обстановкой является актуальной задачей мирового уровня. Одним из возможных вариантом решения проблемы является осуществление способа культивирования фототрофов с применением прерывистого (импульсного) освещения.

Известны различные методы культивирования фототрофов. Например, культивирование в открытых водоемах (Глущук Л.П. Аппаратурно-технологическое оформление процесса культивирования цианобактерий Spirulina. Автореферат диссертации, Москва, 2000). Это наиболее простой и дешевый способ, но он применим только в районах с длительным солнечным периодом и незначительными колебаниями температур.

Однако у это метода культивирования существуют недостатки:

- невозможность увеличения эффективности усвоения солнечной энергии, т.к. солнечный свет является главным лимитирующим фактором прироста биомассы;

- в бассейнах, занимающих большую площадь, для того чтобы достигнуть определенной степени перемешивания, толщина слоя суспензии микроорганизмов должна быть не более 150 мм;

- получаемый продукт имеет нестабильный химический состав.

В странах с более холодным климатом чаще применяют культивирование в фотобиореакторах. Фотобиореакторы имеют различную конструкцию. Могут представлять собой вертикальную стеклянную колонку, содержимое которой перемешивается струей воздуха, обогащенного СО2, подаваемого через донную форсунку. Известен метод культивирования в биореакторах в виде прозрачных пластиковых или стеклянных трубок (http://www.bioprodukte-steinberg.de/index.php?op=algenfarm/ - ссылка на сайт фирмы Bioprodukte Prof. Steinberg). К преимуществам трубчатых реакторов относятся возможность интенсивного освещения, позволяющего добиться высокой плотности биомассы, возможность постоянного контроля за газообменом. В то же время конструктивное решение этих аппаратов затрудняет осуществление процесса со значительным газообменом. Отрицательное влияние этих недостатков на работу аппарата усугубляется с увеличением отношения освещенной поверхности к рабочему объему реактора. Вся световая энергия, поглощенная освещенной поверхностью аппарата и не использованная в процессе фотосинтеза, преобразуется в тепловую.

Известны способы культивирования фототрофов с применением прерывистого освещения с помощью обтюраторов (Светоимпульсная стимуляция растений. Под ред. Шахова А.А. М.: Наука, 1971 - 368 с. Статья А.А.Шахова: Теоретические аспекты преобразования световой энергии в импульсном режиме). Однако применение обтюратора не приводит к снижению затрат электроэнергии.

Наиболее близким к предлагаемой установке, осуществляющим способ культивирования фототрофов является шейкер-инкубатор New Brunswick Innova 42R (http://www.nbsc.com/flles/Innova_42.pdf - рекламный проспект фирмы New Brunswick). В шейкере-инкубаторе New Brunswick Innova 42R прозрачные культиваторы в виде ряда сосудов одинаковой геометрической формы установлены с возможностью встряхивания путем возвратно-поступательного перемещения (в целях аэрации и перемешивания) в горизонтальной плоскости и снабжены источником освещения в виде компактных люминесцентным ламп с возможностью изменения интенсивности освещения, расположенные сверху относительно культиваторов.

Можно назвать следующие недостатки данного способа. В прототипе применяются люминесцентные лампы, в состав которых входит ртуть, что создает проблему утилизации этих ламп. Люминесцентные лампы имеют меньший срок службы и меньший КПД по сравнению со светодиодными источниками освещения. Источник света в данном способе находится на некотором удалении, освещая не только культуру фототрофов, но и среду вокруг нее, что снижает общий КПД всей установки.

К недостаткам следует также отнести невозможность использования в подобной установке импульсного режима освещения, света с длительностью импульса 0,00001-0,001 с и длительностью интервала между импульсами 0,01-0,1 с, соответствующими длительностям световой и темновой фаз фотосинтеза для данного фототрофа, ввиду технологических характеристик люминесцентных ламп.

Задачей изобретения является достижение технического результата - снижение энергетических затрат при культивировании фототрофов. Поставленная задача решается тем, что в способе культивирования фототрофов, заключающемся в перемешивании и аэрации культуральной жидкости встряхиванием колб-культиваторов путем возвратно-поступательного перемещения, поддержании заданных значений температуры, рН и освещении источником света, согласно изобретению освещение осуществляется импульсным источником света с длительностью импульса 0,00001-0,001 с и длительностью интервала между импульсами 0,01-0,1 с, соответствующими длительностям световой и темновой фаз фотосинтеза для данного фототрофа. Установка для осуществления способа включает культиваторы в виде ряда сосудов одинаковой геометрической формы с прозрачными днищами, установленных с возможностью возвратно-поступательного перемещения в горизонтальной плоскости (для аэрации и перемешивания) и снабженных источником освещения, в котором согласно изобретению, источники освещения выполнены в виде набора светоизлучающих диодов, расположенных непосредственно под прозрачными днищами сосудов и соединенных с источником питания в виде генератора импульсов.

Сущность изобретения поясняется фиг.1 и 2, где на фиг.1 изображен прототип, на фиг.2 - заявленная установка. Установка включает в себя культиватор 1, источник импульсного освещения (светоизлучающие диоды) 2, шейкер 3 (для перемешивания и аэрации встряхиванием путем возвратно-поступательного перемещения платформы с культиваторами), источник электропитания - генератор импульсов 4.

Возможность осуществления заявляемого изобретения показана следующими примерами.

Пример 1. Эксперимент проводили на установке, схема которой изображена на фиг.2. Объектом для исследований была выбрана Chlorella sp., культивирование проводили на среде Тамия в течение 10 суток при температуре 35°С. Ферментацию вели в культиваторах (1) - колбах Эрленмейера с номинальным объемом 250 мл, с объемом культуральной жидкости 50 мл. Перемешивание и аэрация суспензии осуществлялись встряхиванием путем возвратно-поступательного перемещения культиваторов шейкером (3). Прирост биомассы определяли на фотоколориметре КФК-2. Подсветка осуществлялась снизу. Каждый источник импульсного освещения (2) содержит 12 светодиодов, потребляемая мощность каждого составляет около 0,08 Вт. Осветители соединены с источником питания - генератором импульсов (4).

В эксперименте были изучены следующие виды освещения: контрольный (постоянное освещение, получаемое от люминесцентных ламп) и экспериментальные (прерывистые), имеющие длительность светового импульса 0,00001 с и длительность интервала между импульсами света 0,01 с.

В результате эксперимента на получение 1 г биомассы в контрольном образце на освещение было затрачено 8,21 Вт·ч, в экспериментальном - 0,06 Вт·ч.

Пример 2. Эксперимент проведен в условиях, аналогичных примеру 1, только длительность светового импульса составила 0,001 с, длительность интервала между импульсами составила 0,1 с. В результате эксперимента на получение 1 г биомассы в контрольном образце было затрачено 8,21 Вт·ч, в экспериментальном - 3,49 Вт·ч.

Таким образом, способ и установка, реализующая его, позволяет значительно сократить затраты электроэнергии на освещение при культивировании фототрофов и соответственно снизить стоимость конечного целевого продукта. Технический результат заключается в снижении энергетических затрат до 0,06-3,49 Вт·ч при получении 1 г биомассы фототрофов.

Похожие патенты RU2450049C2

название год авторы номер документа
Способ культивирования микроводоросли Chlorella 2016
  • Жемухова Олеся Асировна
  • Слонов Людин Хачимович
  • Слонов Тимур Людинович
  • Хандохов Тахир Хамидбиевич
  • Козьминов Сергей Генадьевич
  • Шерхов Заур Хамидбиевич
RU2644261C2
СПОСОБ КУЛЬТИВИРОВАНИЯ ФОТОСИНТЕЗИРУЮЩИХ МИКРООРГАНИЗМОВ 2013
  • Бирюков Валентин Васильевич
  • Макеев Павел Петрович
  • Архипов Михаил Юрьевич
  • Мальцевская Надежда Владиславовна
  • Стехновская Лариса Дмитриевна
RU2550266C2
Способ получения биомассы микроводорослей с высоким содержанием водорастворимого белка 2021
  • Темнов Михаил Сергеевич
  • Дворецкий Дмитрий Станиславович
  • Дворецкий Станислав Иванович
  • Акулинин Евгений Игоревич
  • Устинская Яна Витальевна
  • Еськова Мария Александровна
RU2805058C2
УСТРОЙСТВО ТОНКОСЛОЙНОГО КУЛЬТИВИРОВАНИЯ ФОТОСИНТЕЗИРУЮЩИХ МИКРООРГАНИЗМОВ ДЛЯ УТИЛИЗАЦИИ УГЛЕКИСЛОГО ГАЗА 2019
  • Трубчанинов Марк Константинович
  • Антонец Анна Валерьевна
RU2714636C1
УСТРОЙСТВО ТОНКОСЛОЙНОГО КУЛЬТИВИРОВАНИЯ ФОТОСИНТЕЗИРУЮЩИХ МИКРООРГАНИЗМОВ ДЛЯ УТИЛИЗАЦИИ УГЛЕКИСЛОГО ГАЗА 2019
  • Ермаченко Павел Андреевич
RU2788401C1
БИОРЕАКТОР И СПОСОБ КУЛЬТИВИРОВАНИЯ ФОТОСИНТЕЗИРУЮЩИХ МИКРООРГАНИЗМОВ С ЕГО ИСПОЛЬЗОВАНИЕМ 2008
  • Рамазанов Юрий Ахметович
  • Репков Андрей Петрович
RU2471863C2
Способ получения биомассы микроводорослей Chlorella vulgaris 2022
  • Нагдалян Андрей Ашотович
  • Блинов Андрей Владимирович
  • Оботурова Наталья Павловна
  • Голик Алексей Борисович
  • Маглакелидзе Давид Гурамиевич
  • Яковенко Андрей Антонович
  • Колодкин Максим Андреевич
RU2797012C1
Способ культивирования микроводоросли Chlorella vulgaris 2021
  • Свазлян Гаяне Агасовна
  • Наумов Николай Михайлович
  • Королева Александра Юрьевна
RU2769152C1
ШТАММ Arthrospira platensis (Nordst.) Geitl. rsemsu T/05-117 - ПРОДУЦЕНТ ЛИПИДОСОДЕРЖАЩЕЙ БИОМАССЫ 2012
  • Чернова Надежда Ивановна
  • Коробкова Тамара Павловна
  • Киселева Софья Валентиновна
  • Зайцев Сергей Иванович
  • Радомский Николай Владимирович
RU2539766C2
Способ выращивания микроводоросли Porphyridium purpureum 2016
  • Гудвилович Ирина Николаевна
  • Лелеков Александр Сергеевич
RU2675318C2

Иллюстрации к изобретению RU 2 450 049 C2

Реферат патента 2012 года СПОСОБ КУЛЬТИВИРОВАНИЯ ФОТОТРОФОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к области биотехнологии. При культивировании фототрофов проводят перемешивание и аэрацию культуральной жидкости путем встряхивания за счет возвратно-поступательного перемещения культиваторов в горизонтальной плоскости при заданных значениях температуры и рН. Культиваторы освещают импульсным источником света с длительностью импульса 0,00001-0,001 с и с длительностью интервала между импульсами 0,01-0,1 с. Используют установку, в которой культуральную жидкость освещают диодами, расположенными под прозрачными днищами сосудов одинаковой геометрической формы и получающими питание от генератора импульсов с регулируемой частотой и длительностью светового импульса. Группа изобретений позволяет снизить энергетические затраты до 0,06-3,49 Вт·ч при культивировании 1 г биомассы фототрофов. 2 н.п. ф-лы, 2 ил., 2 пр.

Формула изобретения RU 2 450 049 C2

1. Способ культивирования фототрофов, заключающийся в перемешивании и аэрации культуральной жидкости путем встряхивания за счет возвратно-поступательного перемещения культиваторов, поддержании заданных значений температуры, рН, освещении источником света, отличающийся тем, что освещение осуществляют импульсным источником света с длительностью импульса 0,00001-0,001 с и длительностью интервала между импульсами 0,01-0,1 с, соответствующими длительностям световой и темновой фаз фотосинтеза для данного фототрофа.

2. Установка для осуществления способа по п.1, включающая культиваторы в виде ряда сосудов одинаковой геометрической формы с прозрачными днищами, в которых перемешивание и аэрация осуществляются встряхиванием путем возвратно-поступательного перемещения в горизонтальной плоскости, и снабженных источником освещения с регулируемой интенсивностью освещения, отличающаяся тем, что источники освещения выполнены в виде набора светоизлучающих диодов, расположенных непосредственно под прозрачными днищами сосудов и соединенных с источником питания в виде генератора импульсов с регулируемой частотой и длительностью светового импульса.

Документы, цитированные в отчете о поиске Патент 2012 года RU2450049C2

Под ред
А.А.Шахова
Светоимпульсная стимуляция растений
Теоретические аспекты преобразования световой энергии в импульсном режиме
- М.: Наука, 1971, с.9-13
Устройство для усиления микрофонного тока с применением самоиндукции 1920
  • Шенфер К.И.
SU42A1
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1
Прибор для нагревания перетягиваемых бандажей подвижного состава 1917
  • Колоницкий Е.А.
SU15A1
Способ выращивания микроводоросли хлорелла 1988
  • Якубов Хайрулла
  • Васигов Тулкун
  • Макаров Геннадий Николаевич
  • Журавлев Станислав Георгиевич
  • Киселев Владимир Александрович
  • Рахимов Ахрар
SU1711734A1

RU 2 450 049 C2

Авторы

Бирюков Валентин Васильевич

Макеев Павел Петрович

Мальцевский Владислав Васильевич

Мальцевская Надежда Владиславовна

Даты

2012-05-10Публикация

2010-03-09Подача