ШТАММ Arthrospira platensis (Nordst.) Geitl. rsemsu T/05-117 - ПРОДУЦЕНТ ЛИПИДОСОДЕРЖАЩЕЙ БИОМАССЫ Российский патент 2015 года по МПК C12N1/12 C12R1/89 

Описание патента на изобретение RU2539766C2

Изобретение относится к микроводорослевой биотехнологии и представляет собой новый ранее не описанный, стабильный по морфологическим признакам штамм сине-зеленой микроводоросли/цианобактерии Arthrospira platensis (Nordst.) Geitl. rsemsu T/05-117 (коллекция научно-исследовательской лаборатории возобновляемых источников энергии (НИЛ ВИЭ) географического факультета МГУ имени М.В.Ломоносова), который может быть использован для получения биомассы с повышенным содержанием липидов, имеющей значение для производства жидких биотоплив. Интерес к липидам микроводорослей в последние годы обусловлен их высоким потенциалом в качестве сырья для производства моторного топлива, а также для фармацевтической, химической и пищевой промышленности. Определяющим моментом использования водорослей для получения биотоплива является высокое содержание в них неполярных липидов, в основном триацилглицеридов (ТАГ), являющихся лучшим источником для получения биотоплива и возможность управлять их накоплением путем изменения условий культивирования. Общее содержание липидов в микроводорослях обычно варьирует от 1-85% сухого веса, причем выше 40% обычно получается в условиях дефицита биогенных питательных элементов [1]. Такие факторы как освещение и температура также оказывают влияние на липидное содержание и липидную композицию во многих водорослях [2].

Микроводоросли/цианобактерии Arthrospira/Spirulina platensis (Cyanophyceae) выращиваются в мире открытым способом в больших масштабах и их биомасса применяется как пищевая и кормовая добавка. Ценность биомассы различных штаммов A.platensis в указанных целях определяется высоким содержанием легко усвояемого белка, включающего все незаменимые аминокислоты, углеводов, общих липидов, в том числе полиненасыщенных жирных кислот (особенно большим количеством линолевой и γ-линоленовой кислот), широким спектром витаминов группы В, наличием β-каротина, фикоцианина, хлорофилла d и т.д. Преимуществами A.platensis является ее способность расти в открытых культиваторах без контаминации другими микроорганизмами вследствие высокой щелочности питательной среды для ее выращивания (рН>8) и дешевый способ сбора биомассы. Продуктивность биомассы артроспиры сравнима с таковой признанных микроводорослей-продуцентов липидов, поэтому проигрывая в количественном содержании липидов артроспира в целом по выходу липидов с учетом всех затрат на технологический цикл становится инвестиционно привлекательной наряду с другими микроводорослями [3, 4].

Задачей изобретения является получение Штамма Arthrospira platensis (Nordst.) Geitl. rsemsu Т/05-117, отличающегося от исходного штамма A. platensis rsemsu 1/02-Т/03-5 повышенным содержанием в биомассе липидов - не менее 30%.

Происхождение штамма.

Новый штамм A.platensis rsemsu Т/05-117 был выделен в процессе изучения естественной изменчивости известного штамма A.platensis rsemsu 1/02-1703-5 [5] путем рассева на твердой агаризованной среде Заррука [6]. Штамм A.platensis rsemsu Т/05-117 отличался повышенным содержанием липидов.

По морфологическим признакам полученный штамм A.platensis rsemsu Т/05-117 не отличался от исходного штамма A.platensis rsemsu 1/02-Т/03-5 и был стабилен при длительном культивировании и хранении в коллекции по морфологии трихома (три года наблюдений).

Морфологические признаки штамма.

При выращивании штамма A.platensis rsemsu Т/05-117 в конических колбах на жидкой питательной среде Заррука при температуре 26-28°С, освещенности 30 µЕ/(м2×с) и периодическом встряхивании культура представлена слабо спирализованными трихомами темно-зеленого цвета, гранулированными, без перетяжек или со слабо выраженными перетяжками у поперечных перегородок. Ширина клетки (трихома) - 8.0-10.5 мкм; длина клетки - 2.5-4.0 мкм; внутренний диаметр спирали - 7.0-8.7 мкм; внешний - 15.0-19.2 мкм; расстояние между витками спирали (высота спирали) - 36.0 -57.0 мкм. Длина трихома до 600 мкм, число оборотов спирали - 2.0-20.0, преимущественно 5-8 витков. На агаризованной среде Заррука (1.2% агар-агара) культура представлена как отдельными трихомами, так и в виде пучков.

Характерным признаком штамма A.platensis rsemsu Т/05-117, как и родительского штамма, является то, что геометрия спирали трихома не меняется при многочисленных пересевах при длительном культивировании в жидкой питательной среде и длительном хранении на жидких и агаризованных питательных средах в течение 3-х лет (время наблюдения), т.е. культура была стабильна по морфологическому признаку. Культура хранится в жидкой и на агаризованной среде Заррука в холодильнике со стеклянной дверью (шкаф-витрина ШВУ-0.4-1.3-ХХ «Атлант») при внутреннем (люминесцентная лампа TL-D 18W/33) и внешнем освещении (лампа OSRAM L-36 W/ 640) интенсивностью 5-10 цЕ/(м2хс), в постоянном световом режиме и температуре 9-10°С и подлежит пересеву не реже, чем через 5 месяцев. Размножение.

Вегетативное, делением клеток и последующей фрагментацией трихомов путем разрыва, в т.ч. в области некридиальных клеток. В оптимальных условиях относительная скорость роста равна 0.20 ч"1, что соответствует минимальному времени удвоения 5.0 час.

Физиологические свойства штамма.

Штамм A.platensis rsemsu Т/05-117 является автотрофом, источником углерода служат карбонаты и гидрокарбонаты натрия и калия, усваивает азот в нитратной (натрий азотнокислый и калий азотнокислый) и аммиачной (мочевина, аммиачная селитра) формах. Мезофил: оптимальная температура выращивания 26-32°С. Оптимум рН составляет 8.5-10,5. Подщелачивание питательной среды рН>11.0 тормозит рост и накопление биомассы.

Для культивирования используется среда Заррука [6] и ее модификации. Состав среды, обеспечивающий продуктивность штамма Т/05-117 на уровне 0.9 - 1.5 г/л сухой биомассы включает (в г/л):

- Na НСО3 - 8.0-32.0,

- KNO3-1.0-6.0,

- K2НРО·3Н2O - 0.5-2.0,

- K2SO4 - 0.5-2.0,

- MgSO4·7H2O - 0.1-0.4,

- NaCl - 0.5-2.0,

- СаСl2- 0.02 -0.04

- FeSO4·7H20 - 0.01-0.04,

- трилон Б - 0.04-0.16,

- микроэлементы (растворы А и Б по 1 мл/л среды).

Раствор А (г/л):

- Н3ВО3 - 2.86,

- MnCl2·4Н2O - 1.81,

- ZnSO4·7Н2О - 0.22,

- CuSO4·5Н2О - 0 08,

- МоO3 - 0.015.

Раствор Б (г/л):

- K2Cr2(SO4)4·24 Н2O - 0.096,

- NH4VO3 - 0.023,

- NiSO4·7H2O - 0.048,

- Na2WO4·2H2O - 0.018,

- Ti2(SO4)3 - 0.04,

- Co(NO3)2·6H2O - 0.044.

Известно, что накопление нейтральных липидов, в частности триацилглицеридов (ТАГ), клетками микроводорослей является двухстадийным процессом. При наличии в среде необходимых для роста культуры питательных элементов клетки микроводорослей быстро делятся и в них преобладает биосинтез мембранных, в том числе хлоропластных липидов. При лимите одного из факторов роста, например азота, при продолжающейся фиксации СO2 в процессе фотосинтеза наступает так называемая липогенная фаза, которая характеризуется замедлением или остановкой клеточного деления, нередко редукцией фотосинтетического аппарата и накоплением ТАГ, которые откладываются в виде цитоплазматических включений сферической формы в олеосомах или липидных глобулах (oil bodies). В некоторых случаях наблюдается образование липидных глобул в межтилакоидном пространстве [7, 8, 9].

На фоне дефицита элементов минерального питания наиболее интенсивно ТАГ синтезируются на сильном свету, запасаясь в цитоплазматических олеосомах [8, 10, 11].

Следует подчеркнуть, что условия, благоприятствующие накоплению ТАГ, являются стрессовыми: они препятствуют делению клеток и замедляют рост культуры, снижая продуктивность, что входит в противоречие с задачей получения максимального накопления биомассы с максимальным содержанием целевого продукта (в данном случае ТАГ). Одним из возможных путей решения этой задачи явилось разобщение двух процессов: 1 стадия - накопление биомассы на полной питательной среде, обеспечивающей высокую продуктивность по биомассе и 2 стадия - перевод полученной биомассы для индукции синтеза нейтральных липидов (ТАГ) в стрессовые условия, создаваемые дефицитом элементов минерального питания и условиями культивирования, в частности, манипулируя освещением.

Все вышесказанное в полной мере относится и к микроводоросли/цианобактерии Arthrospira/Spirulina platensis [12].

Изобретение может быть проиллюстрировано следующими примерами:

Пример 1.

Исходный штамм A.platensis rsemsu 1/02-Т/03-5 выращивали по следующей схеме: наращивание инокулята производили в стерильных пробирках размером (20×2) см с объемом среды Заррук'а 15 мл на основе дистиллированной воды при освещении 30 µmol photons/m2/sec, температуре 26-28°C и периодическом встряхивании. Освещение колб обеспечивается лампами ДРЛФ-400. Полученным инокулятом засевали конические колбы объемом 250 мл, заполненные средой того же состава объемом 100 мл, до начальной оптической плотности OD=0,15-0,20 при λ=670 нм, определяемой на КФК-2-УХЛ 4,2. Колбы помещали на перемешивающее устройство с частотой орбитального вращения платформы 120-130 оборотов в минуту при температуре 26-28°С. Освещенность культур составляла 60 µmol photons/m2/sec; световой режим постоянный. Продолжительность культивирования составляла 14 суток. Биомасса микроводоросли отделялась от культуральной жидкости гравитационным методом на ситах из нержавеющей и низкоуглеродистой проволоки с размером ячеек 150-200 мкм. Влажность полученной биомассы составляла не более 90%. Определение массовой доли влаги проводилось по ГОСТ 15113.4.-77 для пересчета результатов анализов по сухому весу. Содержание нейтральных липидов в полученной биомассе определяли следующим методом:

Перед экстракцией липидов влажную биомассу микроводорослей подвергали термообработке на водяной бане при 100°С в течение 10 мин. Экстракцию липидов из предобработанной биомассы осуществляли по методу Фолына [13]. Определение липидов в биомассе проводили спектрофлуорометрическим методом по их взаимодействию с флуоресцентным красителем Нильским красным - специфическим для нейтральных липидов [14]. Содержание нейтральных липидов в полученной биомассе исходного штамма A.platensis rsemsu 1/02- Т/03- 5 составило 8.4%.

Пример 2.

Заявленный штамм A.platensis rsemsu Т/05-117 выращивали аналогично описанному в Примере 1. Определение липидов в биомассе заявленного штамма A.platensis rsemsu Т/05-117, проведенное методом описанным в примере 1, составило 13.5%.

Пример 3.

Исходный штамм A.platensis rsemsu 1/02- Т/03-5 выращивали по следующей схеме: Аналогично описанному в Примере 1 получали инокулюм исходного штамма A.platensis rsemsu 1/02-Т/03-5, в количестве необходимом для засева трех литровых колб с объемом питательной среды в колбе 0,5 л. Исходная OD должна быть не менее 0,15-0,20 при λ=670 нм. В качестве источника углерода дополнительно к NaHCO3 основной среды Зарукк'а использовался СO2 (содержание углекислого газа в газо-воздушной смеси - 2% (объемных)). Барботаж углекислым газом служил также и способом перемешивания в колбах. Контроль за составом газо-воздушной смеси осуществляется с помощью газоанализатора Drager X-am 7000 с диапазоном измерения 0,03-5%. Освещение колб обеспечивается лампами ДРЛФ-400 (освещенность 60 µmol photons/m2/sec); световой режим - день:ночь=16:8. Температура питательной среды 26-28°С; продолжительность культивирования - 10 суток.

Содержание нейтральных липидов в полученной биомассе, определенное методом, описанным в Примере 1, составило 12,5%.

Пример 4.

Заявленный штамм A.platensis rsemsu Т/05-117 выращивали по следующей схеме: аналогично описанному в Примере 1 получали инокулюм заявленного штамма A.platensis rsemsu Т/05-117, в количестве необходимом для засева трех литровых колб с объемом питательной среды в каждой колбе 0,5 л. Исходная OD должна быть не менее 0,15-0,20 при λ=670 нм. В качестве источника углерода дополнительно к NaHCO3 основной среды Зарукк'а использовался СO2 (содержание углекислого газа в газо-воздушной смеси - 2% (объемных)). Барботаж углекислым газом служил также и способом перемешивания в колбах. Контроль за составом газово-воздушной смеси осуществляется с помощью газоанализатора Drager X-am 7000 с диапазоном измерения 0,03-5%. Освещение колб обеспечивается лампами ДРЛФ-400 (освещенность 60 µmol photons/m2/sec); световой режим - день:ночь=16:8. Температура питательной среды 26-28°С; продолжительность культивирования - 10 суток.

Содержание нейтральных липидов в полученной биомассе, определенное методом, описанным в Примере 1, составило 17,1%.

Пример 5.

Часть полученной в Примере 3 биомассы исходного штамма A.platensis rsemsu 1/02-Т/03-5 отделялась от культуральной жидкости, промывалась физраствором и концентрировалась до пастообразного состояния на ситах из нержавеющей и низкоуглеродистой проволоки с размером ячеек 150-200 мкм. Отмытую биомассу помещали в три стеклянных кристаллизатора диаметром 17 см, наполненных 0,5 л среды Зарукк'а каждый без азота и фосфора. Кристаллизаторы устанавливали на магнитную мешалку типа ESP фирмы VELP (скорость вращения магнита 800 оборотов/мин). Освещение культиваторов обеспечивали белыми светодиодами фирмы Edison Opto EDEW-3LS6-FR с цветовой температурой 6000К и световой интенсивностью до 180 люмен. Светодиодные светильники располагались на высоте 70 см над поверхностью кристаллизатора. Для получения максимальной и равномерной освещенности всей площади кристаллизатора использовались рассеивающие линзы 9B30DF Turlens с углом 30°. С помощью прибора Flux Apogee (MQ-200) осуществлялись измерения освещенности поверхности кристаллизатора. Освещенность составляла 450 µmol photons/m2/sec; световой режим постоянный. Температура питательной среды 26-28°С. Продолжительность культивирования составляла 2 суток. Содержание нейтральных липидов в образцах полученной биомассы, определенное методом, описанным в Примере 1, составило для исходного штамма A.platensis шт.1/02-Т/03-5 - 21,3%.

Пример 6.

Часть полученной в примере 4 биомассы заявленного штамма A.platensis rsemsu Т/05-117 отделялась от культуральной жидкости, промывалась физраствором и концентрировалась до пастообразного состояния на ситах из нержавеющей и низкоуглеродистой проволоки с размером ячеек 150-200 мкм. Отмытую биомассу помещали в три стеклянных кристаллизатора диаметром 17 см, наполненных 0,5 л среды Зарукк'а каждый без азота и фосфора. Кристаллизаторы устанавливали на магнитную мешалку типа ESP фирмы VELP (скорость вращения магнита 800 оборотов/мин). Освещение культиваторов обеспечивали белыми светодиодами фирмы Edison Opto EDEW-3LS6-FR с цветовой температурой 6000К и световой интенсивностью до 180 люмен. Светодиодные светильники располагались на высоте 70 см над поверхностью кристаллизатора. Для получения максимальной и равномерной освещенности всей площади кристаллизатора использовались рассеивающие линзы 9B30DF Turlens с углом 30°. С помощью прибора Flux Apogee (MQ-200) осуществлялись измерения освещенности поверхности кристаллизатора. Освещенность составляла 450 µmol photons/m /sec; световой режим постоянный; температура питательной среды 26-28°С.

Продолжительность культивирования составляла 2 суток. Содержание нейтральных липидов в образцах полученной биомассы, определенное методом, описанным в Примере 1, составило для заявленного штамма A.platensis rsemsu Т/05-117 - 32,8%.

Источники информации

1. Borowitzka М.А. 1988. Fats, oils and hydrocarbons // In: Borowitzka M.A, Borowitzka L.J., editors. Micro-algal biotechnology. Cambridge: Cambridge University Press, 1988. P.257-287.

2. Guschina I.A., Harwood J.L. Algal lipids and Effect of the Environment on Their Biochemistry // Lipids in Aquatic Ecosystems / Eds. Kainz M., Brett M., Arts M. Dordrecht, Heidelberg, London, New York: Springer-Verlag, 2009. P.1-24.

3. Коробкова Т.П., Чернова Н.И., Киселева С.В. Артроспира (спирулина) как объект микробиологической промышленности для получения нетрадиционных продуктов природного происхождения // Нетрадиционные природные ресурсы, инновационные технологии и продукты: Сборник научных трудов. Вып.13. М., РАЕН, 2005. С.3-26).

4. Чернова Н.И., Киселева С.В., Коробкова Т.П., Зайцев С.И. Микроводоросли в качестве сырья для получения биотоплива//Альтернативная энергетика и экология. 2008. №9. С.68-74.

5. Патент RU 2322489 С1 Российская Федерация, МПК6 C12N 1/12, C12R 1/89. Штамм Arthrospira platensis (Nordst.) Geitl. 1/02-T/03-5 - продуцент белковой биомассы / Коробкова Т.П., Чернова Н.И., Киселева С.В., Зайцев С.И. заявл. 27.06.2006; опубл. 20.04.2008, Бюл. №11. - 7 с.: 3 ил., 3 табл.

6. Каталог культур микроводорослей в коллекциях СССР. М.: Институт физиологии растений им. К.А.Тимирязева РАН, 1991. С.

7. Leman J. Oleaginous Microorganisms: An Assessment of the Potential // Adv. Appl. Microbiol. 1997. V.43. P.195-244.

8. Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., et al. Micralgal triacylglycerols as feedstocks for biofuel production: perspectives and advances // Plant J. 2008. V.54. P.621-639.

9. Соловченко A.E. Физиологическая роль накопления нейтральных липидов эукариотическими микроводорослями при стрессах. // Ж. Физиология растений. 2012. Т.59. С.192-202

10. Roessler P.G. 1990. Environmental control of glycerolipd metabolism in microalgae: Commercial implications and future research direction. // J. Phycol. 1990. V.26. P.393-399.

11. Tompson G. Lipids and Membrane Function in Green Algae // Biochim. Biophys. Acta / Lipids Lipid Metabolism 1996. V.1302. P.17-45.

12. Uslu Leyla, Isik Oya, Кос Kemal, Goksan. The effect of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis // African Journal of Biotechnology. 17 January, 2011. Vol.10(3), pp.386-389.

13. Folch J, Lees M, Sloane-Stanley GH (1957) a simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1): 497-509.

14. Chen W, Sommerfeld M, Hu Q (2011) Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour. Technol. 102(1): 135-141.

Похожие патенты RU2539766C2

название год авторы номер документа
ШТАММ ARTHROSPIRA PLATENSIS (NORDST.) GEITL. 1/02-T/03-5 - ПРОДУЦЕНТ БЕЛКОВОЙ БИОМАССЫ 2006
  • Коробкова Тамара Павловна
  • Чернова Надежда Ивановна
  • Киселева Софья Валентиновна
  • Зайцев Сергей Иванович
RU2322489C1
СПОСОБ ПОЛУЧЕНИЯ БИОМАССЫ СПИРУЛИНЫ С ВЫСОКИМ СОДЕРЖАНИЕМ БИОЛОГИЧЕСКИ АКТИВНЫХ СОЕДИНЕНИЙ 2022
  • Геворгиз Руслан Георгиевич
  • Железнова Светлана Николаевна
  • Нехорошев Михаил Валентинович
RU2790921C1
ШТАММ СИНЕ-ЗЕЛЕНЫХ ВОДОРОСЛЕЙ SPIRULINA PLATENSIS (NORDST) GEITL КАК ИСТОЧНИК БЕЛКА И БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ 1992
  • Нечаева София Вячеславовна
  • Горонкова Ольга Ивановна
  • Шаповалов Дмитрий Святославович
RU2096463C1
Способ получения биомассы спирулины 1988
  • Рудик Валерий Филиппович
  • Гуля Аурелян Петрович
  • Кокунов Юрий Васильевич
SU1620477A1
ЗОЛОТИСТЫЕ ВОДОРОСЛИ И СПОСОБ ИХ ПРОИЗВОДСТВА 2008
  • Нагназ Бабурао Камбл
RU2478700C2
Способ обогащения пищевого продукта живыми клетками микроводорослей и пищевой продукт, полученный данным способом 2019
  • Куницын Михаил Владиславович
RU2733121C1
СПОСОБ ПОЛУЧЕНИЯ СПИРУЛИНЫ, ОБОГАЩЕННОЙ ВАНАДИЕМ 2000
  • Нечаева С.В.
  • Мазо В.К.
  • Голубев М.А.
  • Булгаков Ш.Х.
RU2198215C2
СПОСОБ ДЛИТЕЛЬНОГО ХРАНЕНИЯ МИКРОВОДОРОСЛЕЙ 2014
  • Харчук Ирина Алексеевна
RU2541452C1
СПОСОБ ПОЛУЧЕНИЯ СИНЕ-ЗЕЛЕНОЙ МИКРОВОДОРОСЛИ SPIRULINA, ОБОГАЩЕННОЙ МИКРОЭЛЕМЕНТАМИ 1998
  • Нечаева С.В.
  • Мазо В.К.
  • Жаворонков В.А.
  • Булгаков Ш.Х.
RU2144078C1
СПОСОБ ЛЕЧЕНИЯ И ПРОФИЛАКТИКИ НАРУШЕНИЙ СОСТОЯНИЯ КОЖНО-ВОЛОСЯНОГО ПОКРОВА У МЕЛКИХ ДОМАШНИХ ЖИВОТНЫХ И ПУШНЫХ ЗВЕРЕЙ 1998
  • Архипов А.В.
  • Коробов А.В.
  • Архипов А.А.
  • Нечаева С.В.
  • Логинов Н.В.
  • Булгаков Ш.Х.
RU2124900C1

Реферат патента 2015 года ШТАММ Arthrospira platensis (Nordst.) Geitl. rsemsu T/05-117 - ПРОДУЦЕНТ ЛИПИДОСОДЕРЖАЩЕЙ БИОМАССЫ

Изобретение относится к биотехнологии. Штамм Arthrospira platensis (Nordst.) Geitl. rsemsu Т/05-117 обладает повышенным содержанием нейтральных липидов. Штамм хранится в коллекции НИЛ ВИЭ географического факультета МГУ имени М.В. Ломоносова. Изобретение позволяет повысить выход нейтральных липидов. 6 пр.

Формула изобретения RU 2 539 766 C2

Штамм Arthrospira platensis (Nordst.) Geitl. rsemsu Т/05-117 (коллекция НИЛ ВИЭ географического факультета МГУ) - продуцент липидосодержащей биомассы.

Документы, цитированные в отчете о поиске Патент 2015 года RU2539766C2

ШТАММ ARTHROSPIRA PLATENSIS (NORDST.) GEITL. 1/02-T/03-5 - ПРОДУЦЕНТ БЕЛКОВОЙ БИОМАССЫ 2006
  • Коробкова Тамара Павловна
  • Чернова Надежда Ивановна
  • Киселева Софья Валентиновна
  • Зайцев Сергей Иванович
RU2322489C1
Штамм @ @ А-60-продуцент биологически активного комплекса липидов и способ получения биологически активного комплекса липидов 1982
  • Сухарева Наталия Николаевна
  • Егоров Николай Сергеевич
  • Уринюк Виктория Марковна
  • Удалова Лидия Сергеевна
SU1128955A1
Способ получения липидов 1979
  • Козлова Л.И.
  • Катруш Р.В.
  • Алентьева Е.С.
  • Великославинская О.И.
  • Бахметьева И.И.
SU839258A1
СПОСОБ ПОЛУЧЕНИЯ ЛИПИДОВ, СОДЕРЖАЩИХ ПОЛИНЕНАСЫЩЕННЫЕ ЖИРНЫЕ КИСЛОТЫ (ВАРИАНТЫ) И СПОСОБ КУЛЬТИВИРОВАНИЯ МИКРООРГАНИЗМОВ, ПРОДУЦИРУЮЩИХ ЭТИ ЛИПИДЫ 2001
  • Рукер Крайг М.
  • Димаси Дон
  • Хансен Джон М.
  • Миррасоул Петер Дж.
  • Бэйли Ричард Б.
  • Видер Джордж Т. Iii
  • Кэнико Татсо
  • Беркли Уилльям Р.
RU2326171C2

RU 2 539 766 C2

Авторы

Чернова Надежда Ивановна

Коробкова Тамара Павловна

Киселева Софья Валентиновна

Зайцев Сергей Иванович

Радомский Николай Владимирович

Даты

2015-01-27Публикация

2012-08-03Подача