Изобретение относится к микробиологии и ветеринарной медицине и может быть использовано для определения антигенной структуры бактерий.
Традиционные способы идентификации патогенных микроорганизмов в объектах внешней среды предусматривают взятие пробы из определенных мест в стерильную посуду и направление ее в лабораторию для анализа (Справочник под ред. М.О.Биргера. М., "Медицина", 1973, с.387), получение чистой культуры и ее идентификацию на основе изучения антигенных и/или биохимических свойств. Однако микрооргнаизмы обладают чрезвычайно разнообразной антигенной структурой, например вид S.enterica включает около 2500 серотипов и идентификация каждого серотипа требует использования большого количества антиген-специфических сывороток, проведение отдельных тестов для идентификации каждого антигена требует больших трудозатрат и большого количества диагностикумов.
При использовании этого способа для индикации патогенных микроорганизмов в объектах внешней среды возникает ряд трудностей, связанных с тем, что в пробах исследуемого материала присутствуют различные посторонние компоненты микрофлоры, отдельные фрагменты генетического материала, что снижает достоверность способа. Способ требует тщательной подготовки исследуемого материала. Аналитическая чувствительность способа в зависимости от вида инфекции составляет 100-1000 м.к./мл, поэтому при низких концентрациях микроорганизма требуется подращивание культуры.
Известен способ количественного иммуноанализа низкомолекулярных и высокомолекулярных соединений с использованием биологического микрочипа (Патент РФ №2363955, опубл. 10.08.2009). Способ предусматривает инкубацию биологического микрочипа (биочипа) в реакционной среде, включающей анализируемый образец для образования комплексов. Биочип представляет собой массив трехмерных гидрогелевых элементов заданного объема, сформированных на подложке методом фото- или химически индуцируемой полимеризации и содержащих одинаковые или различные по своей природе биологические молекулы (лиганды).
Недостатками известного способа являются низкая чувствительность и ограниченные функциональные возможности, поскольку используемый биочип не позволяет использовать целые бактериальные клетки для идентификации их антигенов и предусматривает предварительную очистку изучаемых аналитов. Использование антигенов, а не целых клеток позволяет обеспечить количественность метода, но резко снижает его чувствительность, поэтому требуется использование высокочувствительных детекторов для учета реакции (масс-спектрометрия, ПЦР, ИФА, использование мощных источников излучения для флюоресцентной детекции образовавшихся комплексов).
Наиболее ближайшим к заявляемому способу - прототипом является способ определения антигенов эукариотических клеток с помощью иммунологических биочипов, заключающийся в том, что биочип, содержащий иммобилизированные антитела, помещают в проточную камеру и инкубируют с суспензией эукариотических клеток. Клетки, имеющие на своей поверхности соответствующие антигены, связываются с антителами, иммобилизированными в строго определенных участках подложки. Затем биочип отмывают от клеток, не связавшихся с антителами потоком жидкости с заданной скоростью. Скорость потока жидкости может быть подобрана такой, что происходит отрыв только тех клеток, которые не связались с антителами, а клетки, даже слабо связавшиеся с антителами, остаются на поверхности биочипа. Наличие связавшихся клеток устанавливают путем просмотра пятен биочипа с помощью микроскопа (А.В.Шишкин, И.И.Шмырев, С.А.Кузнецова и др. «Иммунологические биочипы для исследования эритроцитов человека». Биологические мембраны, 2008, т.25, №4, с.267-276).
Недостатками известного способа являются его ограниченные функциональные возможности, поскольку он непригоден для проведения исследования биочипа вне проточной камеры, не позволяет проводить морфологические исследования и идентифицировать клетки, связавшиеся в области пятен биочипа (что в ряде случаев приводит к ошибкам при интерпретации результата). Также данный способ не предназначен для исследования бактериальных клеток. Кроме того, известный способ не позволяет осуществлять хранение биочипа, находящегося в заполненной жидкостью проточной камере, более нескольких часов после проведения анализа, т.к. при более длительном хранении происходит гибель клеток и их разрушение, что исключает возможность проведения повторного исследования клеток в спорных случаях.
Вышеперечисленные недостатки связаны с тем, что происходит отрыв клеток (всех или части) с поверхности биочипа при заполнении капилляра проточной камеры воздухом, необходимым для извлечения биочипа. Отрыв клеток происходит на границе между воздухом и жидкостью. Это делает невозможным окрашивание связавшихся с биочипом клеток способами, используемыми для дальнейшего морфологического исследования и требующими предварительного высушивания биочипа и проведения фиксации (например, по Романовскому-Гимзе). По этой же причине считывание результата и осуществление микроскопического исследования связавшихся клеток может осуществляться только при нахождении биочипа в проточной камере. Окрашивание связавшихся с биочипом клеток другими способами, пригодными только для их ориентировочного исследования (например, путем инкубации с раствором метиленового синего), непосредственно в проточной камере приводит к адсорбции красителя (или иных веществ, используемых в процессе окраски), что нарушает их прозрачность. Это исключает или, по меньшей мере, затрудняет их повторное использование.
Технической задачей заявленного изобретения является расширение функциональных возможностей известного способа и его удешевление.
Поставленная техническая задача достигается предлагаемым способом, заключающимся в том, что в качестве объекта для исследования используют нативную суспензию инактивированных бактериальных клеток, окрашенных флюоресцентным красителем, клетки наносят на биочип с иммобилизированными антителами в виде точек, проводят инкубацию биочипа с клеточной суспензией и отмывку от несвязавшихся клеток с последующей детекцией реакции «антиген-антитело» с помощью источника ультрафиолетового излучения.
Предлагаемый способ заключается в следующем.
Готовят биочип. В качестве подложки для биочипа используют предметное стекло, покрытое 3%-ным раствором альбумина с добавлением 0,1% глицерина и 0,01% красителя амидочерного 10В. Стекла высушивают и инкубируют при температуре не выше 80°C в течение 2-4 часов. На подготовленные стекла наносят в виде точек различные антитела к антигенам микроорганизмов по 0,1-0,5 мкл на точку. Биочип подсушивают в течение 3-5 часов, опускают в 0,2% раствор глутарового альдегида и инкубируют при +5°C в течение 16-18 часов. Биочип споласкивают дистиллированной водой, погружают в 1%-ный раствор бычьего сывороточного альбумина с добавлением 0,02% твин-20 в фосфатно-солевом буфере (50 мМ, pH 7,2-7,4). Инкубируют 1 час, споласкивают дистиллированной водой и высушивают. Хранят при +5°C в сухой герметичной таре.
Проведение анализа осуществляют следующим образом. Суспензию бактериальных клеток в концентрации не менее 1×105 микробных кл/мл, инактивированных любым способом, не разрушающим анализируемый антиген, ресуспендируют в буферном растворе, содержащем 50 мМ Трис HCl, 0,02% твин-20, 50 мМ NaCl и пропидиум иодид в концентрации 1,0-2,0 мкг/мл. Суспензию наносят на поверхность биочипа в количестве, достаточном для покрытия всех участков биочипа, содержащих антитела, накрывают полиэтиленовой пленкой и инкубируют в течение 1-2 часов при комнатной температуре.
После завершения инкубации биочип отмывают от несвязавшихся бактериальных клеток с помощью буферного раствора, содержащего 50 мМ Трис HCl, 0,02% твин-20, 50 мМ NaCl, далее споласкивают в дистиллированной воде. Детекцию реакции образования комплекса «антиген-антитело» проводят с использованием источника ультрафиолетового излучения, например трансиллюминатора. Бактериальные клетки, содержащие флюоресцентный краситель, при взаимодействии со специфическими антителами, иммобилизированными на поверхности биочипа, образуют комплекс «антиген-антитело» в виде скопления светящихся клеток, визуализируемых в ультрафиолетовых лучах в виде светящихся пятен, локализованных в местах, где нанесены антитела, специфичные к данному антигену.
Для определения серотипа микроорганизма результаты реакции интерпретируют в соответствии с существующими диагностическими таблицами.
Определяющими существенными отличиями заявляемого способа от прототипа являются:
- для определения антигенов бактериальных клеток используют нативную суспензию инактивированных бактериальных клеток, окрашенных флюоресцентным красителем, что позволяет расширить функциональные возможности способа, а также повысить его чувствительность, т.к. связывание антигена с антителом сопровождается иммобилизацией на биочипе целых бактериальных клеток, содержащих намного большее количество молекул флюоресцентного красителя, связанного с ДНК, чем может содержать единичная молекула очищенного и меченного флюорофором антигена (прототип);
- флюоресцентное мечение бактерий проводят интеркалирующим ДНК флюоресцентным красителем - пропидиум иодидом, что позволяет упростить процесс мечения антигена за счет исключения из реакций вторичных меченых антител, химических способов ковалентного «пришивания» к антигену различных меток, а также удешевить способ за счет применения более дешевых систем детекции.
Технический результат достигается за счет того, что целая клетка может содержать в своем составе гораздо больше молекул флюоресцентной метки, чем отдельная молекула антигена, в связи с чем светимость комплекса «антиген-антитело», входящего в состав бактериальной клетки/антитела, будет выше, чем комплекса чистый антиген/антитело, что позволяет проводить учет реакции без применения дорогостоящего оборудования.
Изобретение иллюстрируется следующими примерами конкретного выполнения способа.
Пример 1.
Определение антигенов бактериальных клеток Streptococcus sp.
В качестве биочипа использовали предметное стекло, покрытое 3% раствором альбумина с добавлением 0,1% глицерина и 0,01% амидочерного 10В. Стекла высушивали и инкубировали при температуре не выше 80°C в течение 2 ч. На подготовленные стекла наносили в виде точек антитела к соматическим О антигенам Streptococcus sp. серогрупп A, B, C, D и антитела к O антигенам Salmonella enterica по 0,2 мкл на точку. Биочипы подсушивалии в течение 2 ч и инкубировали в 0,2% растворе глютарового альдегида при +5°C в течение 18 ч.
Биочипы споласкивали дистиллированной водой, погружали в 1% раствор бычьего сывороточного альбумина с 0,02% твин-20 в фосфатно-солевом буфере (50 мМ, pH 7,2-7,4), инкубировали 1 час, споласкивали дистиллированной водой и высушивали.
Проведение анализа осуществляли следующим образом. Суспензию Streptococcus sp. в концентрации 1×106 микробных кл/мл, инактивированных кипячением в течение 30 минут, ресуспендировали в буферном растворе, содержащем 50 мМ Трис HCl, 0,02% твин-20, 50 мМ NaCl и пропидиум иодид в концентрации 1,0 мкг/мл. Суспензию наносили на поверхность биочипа в количестве 200 мкл, накрывали полиэтиленовой пленкой и инкубировали 1 час при комнатной температуре.
После инкубации удаляли несвязавшиеся клетки путем споласкивания в буферном растворе, содержащем 50 мМ Трис HCl, 0,02% твин-20, 50 мМ NaCl, споласкивали в дистиллированной воде и проводили детекцию связавшихся бактерий с использованием трансиллюминатора, содержащего источник ультрафиолетового излучения типа ртутной лампы, светофильтр и систему видеодокументации излучения. При образовании комплекса «антиген-антитело» на биочипе видны светящиеся пятна, локализованные в местах, где нанесены антитела, специфичные данному антигену. Результаты представлены в таблице 1.
Как следует из таблицы 1, способ характеризуется достаточной специфичностью и позволяет различать микроорганизмы рода Streptococcus разных серотипов.
Пример 2.
Проводили определение антигенов бактериальных клеток Salmonella sp. предложенным способом. Одновременно определяли возможность использования коммерческих препаратов антител, предназначенных для реакции агглютинации, в составе биочипа. В качестве контроля проводили определение антигенов бактериальных клеток S.enterica в реакции агглютинации. Для этой цели использовали бактериальную культуру S.enterica и коммерческие препараты (BioRad) антител, используемые для определения серотипов сальмонелл.
В качестве биочипа использовали предметное стекло, покрытое 3% раствором альбумина с добавлением 0,1% глицерина и 0,01% амидочерного 10В. Стекла высушивали и инкубировали при температуре не выше 80°C в течение 2 ч. На подготовленные стекла наносили в виде точек антитела к соматическим (О антигенам) и жгутиковым (Н-антигенам) Salmonella enterica по 0,1 мкл на точку. Биочипы подсушивалии в течение 3 ч и инкубировали в 0,2% растворе глютарового альдегида при +5°C в течение 20 ч.
Биочипы споласкивали дистиллированной водой, погружали в 1% раствор бычьего сывороточного альбумина с 0,02% твин-20 в фосфатно-солевом буфере (50 мМ, pH 7,2-7,4), инкубировали 2 часа, споласкивали дистиллированной водой и высушивали.
Проведение анализа осуществляли следующим образом. Суспензию Salmonella sp. в концентрации 1×105 микробных кл/мл, инактивированных кипячением в течение 30 минут, ресуспендировали в буферном растворе, содержащем 50 мМ Трис HCl, 0,02% твин-20, 50 мМ NaCl и пропидиум иодид в концентрации 2 мкг/мл. Суспензию наносили на поверхность биочипа в количестве 100 мкл, накрывали полиэтиленовой пленкой и инкубировали 2 часа при комнатной температуре.
После инкубации удаляли несвязавшиеся клетки путем споласкивания в буферном растворе, содержащем 50 мМ Трис HCl, 0,02% твин-20, 50 мМ NaCl, споласкивали в дистиллированной воде и проводили детекцию связавшихся бактерий с использованием трансиллюминатора. При образовании комплекса «антиген-антитело» на биочипе видны светящиеся пятна, локализованные в местах, где нанесены антитела, специфичные данному антигену.
Реакцию агглютинации на стекле проводили в соответствии с рекомендациями производителя препаратов антител.
Полученные результаты отражены в таблице 2.
Из результатов, отраженных в таблице 2, следует, что одни и те же антитела, используемые в реакции агглютинации на стекле и в составе биочипа, позволяют получить сопоставимые результаты, что позволяет использовать существующие коммерческие препараты антител. Также данные в таблице 2 свидетельствуют о воспроизводимости реакций образования антиген-антитело при проведении микроагглютинации и с использованием предложенного способа.
Пример 3.
Для определения серотипа микроорганизма Salmonella enterica использовали 4 культуры Salmonella enterica следующих серотипов: typhimurium, enteritidis, dublin, paratyphi А, а также сыворотки фирмы BioRad к O, H и Vi антигенам S.enterica. Способ осуществляли аналогично примеру 1. Результаты представлены в таблице 3.
Из таблицы 3 видно, что обнаруженные антигены соответствуют антигенной структуре серотипов Salmonella enterica, серотипов typhimurium, enteritidis, dublin, paratyphi A.
Таким образом, предложен простой и чувствительный способ, позволяющий определять антигенную структуру бактерий и проводить детекцию результатов реакций одномоментно без микроскопирования с использованием дешевых систем визуализации.
Использование заявляемого способа позволит следующие.
1. Расширить функциональные возможности способа за счет возможности определения антигенной структуры прокариотических бактерий (микроорганизмов).
2. Упростить и удешевить способ за счет:
- исключения из этапов пробоподготовки стадии получения очищенных антигенов;
- использования стандартных коммерческих препаратов антител, применяемых для изучения антигенной структуры бактерий;
- исключения дорогостоящего оборудования: систем детекции свечения флюорофоров с использованием лазерной техники, систем масс-спектрометрии, ПЦР-оборудования;
- обеспечения возможности визуализировать результаты реакции одномоментно с помощью трансиллюминатора, что позволяет исключить этап микроскопирования и/или последовательного сканирования каждого участка биочипа с нанесенными на его поверхность антителами.
3. Обеспечить возможность хранения биочипа после проведения реакции при комнатной температуре.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ АНТИТЕЛ К БАКТЕРИАЛЬНЫМ АНТИГЕНАМ | 2014 |
|
RU2563885C1 |
КЛОН ГИБРИДНЫХ КЛЕТОК F3H10 ЖИВОТНЫХ MUS MUSCULUS L. - ПРОДУЦЕНТ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ К ДИФТЕРИЙНОМУ ТОКСИНУ | 2009 |
|
RU2407795C1 |
КЛОН ГИБРИДНЫХ КЛЕТОК G10B6 ЖИВОТНЫХ MUS MUSCULUS L - ПРОДУЦЕНТ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ К ДИФТЕРИЙНОМУ ТОКСИНУ | 2009 |
|
RU2401303C1 |
НАБОР СИНТЕТИЧЕСКИХ ОЛИГОНУКЛЕОТИДНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ ДЛЯ ИДЕНТИФИКАЦИИ И ДЕТЕКЦИИ ГЕНОВ qnrS и qnrB, ОБЕСПЕЧИВАЮЩИХ УСТОЙЧИВОСТЬ К ФТОРХИНОЛОНАМ БАКТЕРИЙ СЕМЕЙСТВА ENTEROBACTERIACEAE, МЕТОДОМ ПЦР С ДЕТЕКЦИЕЙ В РЕЖИМЕ «РЕАЛЬНОГО ВРЕМЕНИ» И СПОСОБ ИХ ПРИМЕНЕНИЯ | 2022 |
|
RU2810576C1 |
ПОЛИВАЛЕНТНАЯ ИНАКТИВИРОВАННАЯ ВАКЦИНА ПРОТИВ РИЕМЕРЕЛЛЁЗА, ПАСТЕРЕЛЛЁЗА И САЛЬМОНЕЛЛЁЗА ИНДЕЕК, УТОК И ГУСЕЙ, СПОСОБ ЕЁ ПОЛУЧЕНИЯ | 2020 |
|
RU2750865C1 |
ПОЛИВАЛЕНТНАЯ ИММУНИЗИРУЮЩАЯ И/ИЛИ ТЕРАПЕВТИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ ПРИМЕНЕНИЯ ПРИ БАКТЕРИАЛЬНЫХ ИНФЕКЦИЯХ ИЛИ ПИЩЕВОМ ОТРАВЛЕНИИ, В ЧАСТНОСТИ САЛЬМОНЕЛЛЁЗЕ, СПОСОБ ПОЛУЧЕНИЯ ЭТОЙ КОМПОЗИЦИИ, ЕЁ ПРИМЕНЕНИЕ И ВАКЦИНА, СОДЕРЖАЩАЯ ЭТУ КОМПОЗИЦИЮ | 2013 |
|
RU2683027C2 |
КЛОН ГИБРИДНЫХ КЛЕТОК ЖИВОТНЫХ MUS MUSCULUS L - ПРОДУЦЕНТ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ К ХОЛЕРНОМУ ТОКСИНУ | 2009 |
|
RU2401299C1 |
КЛОН ГИБРИДНЫХ КЛЕТОК ЖИВОТНЫХ MUS MUSCULUS L - ПРОДУЦЕНТ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ К ХОЛЕРНОМУ ТОКСИНУ | 2009 |
|
RU2401301C1 |
КЛОН ГИБРИДНЫХ КЛЕТОК ЖИВОТНЫХ MUS MUSCULUS L - ПРОДУЦЕНТ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ К ХОЛЕРНОМУ ТОКСИНУ | 2009 |
|
RU2401300C1 |
СПОСОБ ВЫЯВЛЕНИЯ ОРНИТОБАКТЕРИОЗА У СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПТИЦЫ | 2009 |
|
RU2407801C1 |
Изобретение относится к области микробиологии и ветеринарной медицины и касается способа определения антигенов бактерий. Представленный способ включает приготовление биочипа, содержащего иммобилизированные антитела к различным антигенам, инкубирование биочипа с анализируемой суспензией клеток в течение 1-2 часов при комнатной температуре, отмывку биочипа от несвязавшихся клеток и детекцию реакции «антиген-антитело» с использованием источника ультрафиолетового излучения. Суспензию бактериальных клеток берут в концентрации не менее 1×105 микробных кл/мл, инактивированных любым способом, не разрушающим анализируемый антиген, и ресуспендируют в буферном растворе, содержащем 50 мМ Трис HCl, 0,02% твин-20, 50 мМ NaCl и пропидиум иодид в концентрации 1,0-2,0 мкг/мл, и наносят на поверхность биочипа в количестве, достаточном для покрытия всех его участков. Представленное изобретение позволяет более простым и дешевым способом определить наличие антигенов бактерий. 1 з.п. ф-лы, 3 табл., 3 пр.
1. Способ определения антигенов бактерий, включающий приготовление биочипа, содержащего иммобилизированные антитела к различным антигенам, инкубирование биочипа с анализируемой суспензией клеток, отмывку биочипа от несвязавшихся клеток с последующей детекцией реакции антиген-антитело, отличающийся тем, что в качестве объекта исследования используют суспензию бактерий в концентрации не менее 1·105 микробных кл/мл, инактивированную любым неразрушающим бактериальные клетки способом, последнюю ресуспендируют в буферном растворе, содержащем 50 мМ Трис HCl, 0,02% твин-20 и 50 мМ NaCl и флюоресцентный краситель - пропидиум иодид в концентрации 1,0-2,0 мкг/мл, наносят на поверхность биочипа в количестве, достаточном для покрытия всех участков биочипа, и инкубируют в течение 1-2 ч при комнатной температуре с последующей детекцией реакции антиген-антитело с помощью источника ультрафиолетового излучения.
2. Способ по п.1, отличающийся тем, что в качестве источника ультрафиолетового излучения используют трансиллюминатор.
ШИШКИН А.В | |||
и др | |||
Иммунологические биочипы для исследования эритроцитов человека | |||
Биологические мембраны, 2008, т.25, №4, с.267-276 | |||
ШИШКИН А.В | |||
и др | |||
Иммунологические биочипы для параллельного определения поверхностных антигенов и морфологического исследования клеток | |||
Биологические мембраны, 2008, т.25, №4, с.277-284 | |||
KR 20090064942 A, 22.06.2009 | |||
JP 2001004630 A, 12.01.2001. |
Авторы
Даты
2012-05-20—Публикация
2010-12-08—Подача