Изобретение относится к гидравлическим (рабочим) жидкостям, предназначенным для гидравлических систем авиационной техники, в частности к авиационному синтетическому гидравлическому маслу для гидросистем авиационной ракетной и наземной техники, позволяющих обезопасить работу и эксплуатацию гидравлических систем при высоких температурах (пониженная пожароопасность ввиду высокой температуры вспышки и воспламенения). Также существенно снижены потери от испарения, что дает возможность более стабильной работы механических частей, например, скорость срабатывания гидроприводов.
Данное авиационное гидравлическое масло относится к новейшему поколению гидравлических жидкостей для воздушных судов и ракет. Является лучшим компромиссным решением по низкотемпературным требованиям к сохранению текучести (до -55°С), огнестойкости для безопасной эксплуатации и смазывающей способности для предотвращения износа и задиров в широких температурных границах. Может применяться в гидросистемах, которые до этого работали на нефтяных жидкостях без замены резиновых уплотнений. Применяются также в автопилотах, тормозных механизмах и в качестве амортизационной жидкости. Дают возможность обезопасить работу и эксплуатацию при высоких температурах вспышки и воспламенения.
К обязательным требованиям, предъявляемым к рабочим жидкостям для гидравлических систем авиационной техники, относятся:
- хорошие вязкостно-температурные характеристики (вязкость при 50°С не менее 8 мм2/с, при минус 60°С не более 5000 мм2/с);
- стабильность вязкости при механодинамических нагрузках (вязкость жидкости не должна уменьшаться при прокачке насосом и дросселировании в золотниках под высоким давлением);
- пожаробезопасность в случае разгерметизации гидравлической системы в аварийных ситуациях (температура вспышки паров жидкости должна быть не ниже 170°С).
В гидравлических системах отечественных самолетов и вертолетов в качестве рабочей жидкости широко применяется гидравлическое масло АМГ-10 («Масло АМГ-10» ГОСТ 6794) на основе низкозастывающих минеральных углеводородов с добавлением вязкостной, антиокислительной и противоизносной присадок. Рекомендуемый диапазон рабочих температур от минус -60°С до + 125°С.
Однако указанное гидравлическое масло АМГ-10 имеет следующие недостатки:
- уменьшение вязкости при эксплуатации в гидравлических системах (до 30%) вследствие механохимической деструкции молекул вязкостной полимерной присадки, что существенно сокращает ресурс работы масла и снижает надежность работы гидроагрегатов. Например, ресурс работы масла АМГ-10 в гидросистемах самолетов ТУ-154 не превышает 600 часов вследствие уменьшения вязкости с 10 до 7 мм2/с (Ю.Е.Раскин, Ю.И.Денисов, Е.М.Вижанков, Б.Г.Бедрик. Диагностика и контроль ресурса применения рабочих жидкостей в гидросистемах авиационной техники. «Контроль. Диагностика», №5, 2004, с.38-40);
- неудовлетворительная пожаробезопасность при нарушении герметичности гидросистемы под давлением вследствие низких значений температуры вспышки паров (93°С при рабочей температуре жидкости до 125°С);
- неудовлетворительная термоокислительная устойчивость при температурах выше 125°С.
Гидравлическое масло АМГ-10 имеет невысокую стойкость к воспламенению, характеризуемую относительно низкой температурой вспышки, находящейся на уровне 93°С. Кроме того, в связи с возросшими в новых летательных аппаратах перепадами давления в гидросистемах имеет место увеличение градиента скорости сдвига в объеме масла, что приводит к повышению механических нагрузок на полимерный модификатор вязкости и его деструкции: чем выше давление в гидросистеме, тем быстрее достигает вязкость масла при 50°С своего нижнего предела, равного 8 мм2/с и являющегося критическим показателем для замены масла АМГ-10 полностью на свежее. Если раньше этот порог достигался за 1500 часов работы, то в современных гидросистемах он равен 100 часам и менее. Для современных и новых поколений самолетов необходимо гидравлическое масло с более высокими характеристиками по стойкости к воспламенению и механическим нагрузкам, но при этом оно должно быть взаимозаменяемым с маслом АМГ-10.
Известен состав смазочного масла для газовых турбин (патент РФ 2185423. 20.07.2002, бюл. №20) для применения в газотурбинных двигателях сверхзвуковой авиации следующего состава, мас.%:
Однако указанный состав не может быть использован в качестве рабочей жидкости для гидравлических систем авиационной техники, так как не обеспечивает требований по вязкости при минусовых температурах - уже при минус 40°С вязкость 4000=5000 мм2/с (необходимо при минус 60°С - не более 5000 мм2/с), термоокислительной устойчивости при высоких температурах - кислотное число за 50 часов увеличивается с 0,01-0,08 мг КОН/г до 4,05-6,0 мг КОН/г (допускается не более 0,15 мг КОН/1г), вязкость увеличивается на 40-50% и образуется осадок в количестве 0,06-0,15 мас.%, что не допустимо для рабочих жидкостей для гидравлических систем авиационной техники.
Известна рабочая жидкость для гидравлических систем авиационной техники (патент RU 2275418 С1), где в качестве основы применяются, мас.%: доктилсебацинат 9,9-10,1, полиэтилсилоксановая жидкость с вязкостью 4-49 мм2/с при 20°С 17-23, поли-альфа-олефины с вязкостью 1,7-2,0 мм2/с при 100°С 25-32, поли-альфа-олефины с вязкостью 3,7-4,3 мм2/с при 100°С до 100. Характеристики масла: кинематическая вязкость при минус 50°С 1540-3712 мм2/с, исследование термоокислительной стабильности проводили при 135°С. Технический результат - улучшение вязкостных характеристик при минусовых температурах (до минус 60°С), повышение термоокислительной устойчивости.
Из RU 2347803, 27.02.2009 известна рабочая жидкость для гидравлических систем авиационной техники, содержащая 2,6-ди-трет-бутилпаракрезол, фенил-α-нафтиламин, трикрезил-фосфат, в качестве основы содержит диоктилсебацинат термостабильный, фракцию поли-альфа-олефинов с вязкостью 1,7-2,0 мм2/с при 100°С и полиалкилсилоксановую жидкость с вязкостью 14-16 мм2/с при 100°С, при следующем соотношении компонентов, мас.%:
Технический результат - улучшение термоокислительной стабильности, вязкостных характеристик в области минусовых температур, повышение максимальной рабочей температуры эксплуатации.
Технической задачей заявленного изобретения является создание авиационного синтетического масла для гидросистем с повышенной взрыво- и пожаробезопасностью и возможностью использования его в гидросистемах более высокой мощности и при более высокой температуре при сохранении высоких эксплуатационных свойств.
Техническая задача достигается смазочной композицией авиационного синтетического гидравлического масла для гидросистем авиационной, ракетной и наземной техники, содержащей в качестве базовой основы поли-альфа-олефиновые углеводороды с кинематической вязкостью при 100°С от 1,5-6 мм2/с и молекулярной массой от 260 до 560 г/моль, реологический концентрат NYCOPERF RA 655 на основе маловязких моноэфиров С5-С10-карбоновых кислот и С8-С13-спиртов, стабилизированных полиметакрилатом, и имеющий вязкость при 100°С от 1,6- 2,0 сСт и 120-130 сСт при -40°С и температуру застывания ниже -72°С, фенольную антиокислительную присадку, триизопропилфосфат в качестве противоизносной присадки, ингибитор коррозии 1,2,3-бензотриазол или производное толутриазола Иргамет 39, кремнийорганическую жидкость в качестве антипенной добавки и краситель, при следующем соотношении исходных компонентов в мас.%:
указанная базовая основа на основе
В композиции авиационного синтетического гидравлического масла по изобретению в качестве поли-альфа-олефиновых углефодородов (поли-альфа-олефиновых углефодородов) используют ПАО с кинематической вязкостью при 100°С от 1,5-6 мм2/с, предпочтительно от 1,7- 3,6 мм2/с; с молекулярной массой от 260 до 560 г/моль, предпочтительно от 275 до 400 г/моль.
И в частности, в качестве таких поли-альфа-олефиновых углеводородов используют поли-альфа-олефиновые углеводороды ПАМ-2 (ТУ 2053-014-544 09843-2007) или NEXBASE 2002 BULK, имеющие кинематическую вязкость при 100°С от 1,6-1,8 мм2/с, температуру застывания не выше - 66°С.
В композиции авиационного синтетического гидравлического масла по изобретению используют реологический концентрат NYCOPERF RA 655 NICO СА (Франция), представляющий собой маловязкий моноэфир C18H38O2, стабилизированный полиметакрилатом небольшой молекулярной массы от 200 до 500 г/моль. Моноэфир синтезирован из кислот, содержащих 5-10 атомов углерода и спиртов, имеющих 8-13 атомов углерода, и обладает вязкостными свойствами при 100°С в пределах 1,6-2,0 сСт и при -40°С 120-130 сСт, и температурой застывания ниже минус 72°С. Загущающая присадка, улучшающая индекс вязкости до 310, обеспечивает пологость вязкостно-температурной зависимости реологического концентрата NYCOPERF RA 655.
В качестве фенольной антиокислительной присадки авиационное гидравлическое масло по изобретению содержит, например, метилен-бис-дитретбутил-фенол марки МБ-1 или Ethanox 4702, или Ирганокс 1010 (пентаэритритол тетракис (3-(3,5-ди-трет-бутил-4-гидрокси-фенил) пропионат).
В качестве противоизносной присадки авиационное гидравлическое масло по изобретению содержит три-изо-пропилфосфат ТИПФ или Durad 150.
В качестве ингибитора коррозии авиационное гидравлическое масло по изобретению содержит 1,2,3-бензотриазол или производные толутриазола Иргамет 39 (N,N-бис-(2-этилгексил)-4-метил-1Н-бензотриазол-1-метиламин).
В качестве антипенной добавки авиационное гидравлическое масло по изобретению содержит кремнийорганическую жидкость, например, ПМС-200 (полиметилсилоксановая жидкость) или Synaflve AC или АmН 2 (сертификат фирмы Cognis, 2007).
В качестве красителя авиационное гидравлическое масло по изобретению содержит, например, краситель жирорастворимый зеленый VERT AU CRAS W 7200 (сертификат фирмы Sensient, 2007).
В таблице 1 представлен конкретный пример состава смазочной композиции авиационного синтетического гидравлического масла по изобретению, иллюстрирующий, но не ограничивающий объем притязаний.
В таблицах 2-3 представлены свойства базовой смеси авиационного масла по изобретению, состоящей из базовых компонентов поли-альфа-олефиновых углеводородов (ПАОМ-2) и реологического концентрата NYCOPERF RA 655 (ТУ 0253-003-07548712-2010).
В таблице 4 представлены основные свойства авиационного синтетического гидравлического масла по изобретению.
Композицию авиационного гидравлического масла по изобретению готовят путем приготовления базовой смеси смешением базовой основы на основе поли-альфа-олефиновых углеводородов с реологическим концентратом и пакетом присадок при нагревании.
В реактор подают расчетное количество компонентов базовой смеси синтетических углеводородов (БССУ). Перемешивают, нагревают до 60-80°С до полной растворимости. При перемешивании далее загружают присадки, фильтруют.
Таким образом, как следует из приведенных данных, заявленная в качестве изобретения смазочная композиция авиационного синтетического гидравлического масла обладает высокими эксплуатационными свойствами с повышенными взрыво- и пожаробезопасностью за счет экспериментально подобранного сочетания базовой смеси (базовая основа на основе поли-альфа-олефиновых углеводородов в сочетании с реологическим концентратом на основе маловязких моноэфиров, стабилизированных полиметакрилатом) и подобранных добавок-присадок, оказывающих синергетическое действие в заявленном авиационном масле.
Получена новая высококачественная гидравлическая жидкость (авиационное синтетическое гидравлическое масло, предназначенное для применения в гидросистемах авиационной, ракетной и гидросистемах наземного оборудования) с высокими антикоррозионными требованиями.
название | год | авторы | номер документа |
---|---|---|---|
ГИДРАВЛИЧЕСКАЯ ЖИДКОСТЬ | 2009 |
|
RU2430146C2 |
Рабочая жидкость для гидравлических систем | 2017 |
|
RU2659393C1 |
ГИДРАВЛИЧЕСКАЯ ЖИДКОСТЬ ДЛЯ АВТОМАТИЧЕСКИХ КОРОБОК ПЕРЕДАЧ | 2012 |
|
RU2477308C1 |
Способ получения синтетического компонента основ гидравлических масел для ракетно-космической техники | 2019 |
|
RU2703538C1 |
РАБОЧАЯ ЖИДКОСТЬ ДЛЯ ГИДРАВЛИЧЕСКИХ СИСТЕМ АВИАЦИОННОЙ ТЕХНИКИ | 2004 |
|
RU2275418C1 |
МОТОРНО-РЕДУКТОРНОЕ МАСЛО | 2010 |
|
RU2441058C2 |
ПАКЕТ ПРИСАДОК К МОТОРНЫМ МАСЛАМ И МАСЛО, ЕГО СОДЕРЖАЩЕЕ | 2011 |
|
RU2461609C1 |
СМАЗОЧНАЯ КОМПОЗИЦИЯ СИНТЕТИЧЕСКОГО ТУРБИННОГО МАСЛА ДЛЯ ПАРОТУРБИННЫХ УСТАНОВОК | 2013 |
|
RU2550137C2 |
МОТОРНОЕ МАСЛО | 2002 |
|
RU2232796C1 |
ТРАНСМИССИОННОЕ МАСЛО | 2001 |
|
RU2203929C2 |
Настоящее изобретение относится к смазочной композиции авиационного синтетического гидравлического масла для гидросистем авиационной, ракетной и наземной техники, содержащей в качестве базовой основы полиальфаолефиновые углеводороды в сочетании с реологическим концентратом на основе маловязких моноэфиров C18H38O2, стабилизированных полиметакрилатом (NYCOPERF RA 655), фенольную антиокислительную присадку, триизопропилфосфат в качестве противоизносной присадки, ингибитор коррозии 1,2,3-бензотриазол или производное толутриазола Иргамет 39, кремнийорганическую жидкость в качестве антипенной добавки и краситель. Техническим результатом настоящего изобретения является создание авиационного гидравлического масла с высокими эксплуатационными характеристиками и с повышенной взрыво- и пожаробезопасностью. 4 табл.
Смазочная композиция авиационного синтетического гидравлического масла для гидросистем авиационной, ракетной и наземной техники, содержащая в качестве базовой основы поли-альфа-олефиновые углеводороды с кинематической вязкостью при 100°С от 1,5-6 мм2/с и молекулярной массой от 260 до 560 г/моль, реологический концентрат NYCOPERF RA 655, на основе маловязких моноэфиров С5-С10-карбоновых кислот и C8-C13-спиртов, стабилизированных полиметакрилатом, и имеющий вязкость при 100°C от 1,6-2,0 сСт и 120-130 сСт при -40°С и температуру застывания ниже -72°С, фенольную антиокислительную присадку, триизопропилфосфат в качестве противоизносной присадки, ингибитор коррозии 1,2,3-бензотриазол или производное толутриазола Иргамет 39, кремнийорганическую жидкость в качестве антипенной добавки и краситель при следующем соотношении исходных компонентов, мас.%:
ВСЕСЕЗОННОЕ ГИДРАВЛИЧЕСКОЕ МАСЛО | 2004 |
|
RU2271383C1 |
ТОРМОЗНАЯ ЖИДКОСТЬ | 1999 |
|
RU2175342C2 |
РАБОЧАЯ ЖИДКОСТЬ ДЛЯ ГИДРАВЛИЧЕСКИХ СИСТЕМ АВИАЦИОННОЙ ТЕХНИКИ | 2004 |
|
RU2275418C1 |
МОТОРНО-РЕДУКТОРНОЕ МАСЛО ДЛЯ АВИАЦИОННОЙ ТЕХНИКИ | 2005 |
|
RU2283341C1 |
JP 2007327069 A, 20.12.2007. |
Авторы
Даты
2012-06-10—Публикация
2010-11-12—Подача