ЭЛЕКТРОДУГОВОЙ НАГРЕВАТЕЛЬ ГАЗА Российский патент 2012 года по МПК H05B7/00 

Описание патента на изобретение RU2454044C2

Изобретение относится к области электротехники, а именно к электродуговым нагревателям газа (плазмотронам), используемым для получения стационарных потоков плазмы различных газов, и может быть применено в химической, металлургической промышленности, а также в научных целях при проведении аэродинамических экспериментов.

Известен электродуговой подогреватель газа [B.C.Чередниченко, А.С.Аньшаков, М.Г.Кузьмин. Плазменные электротехнологические установки: учебное пособие. - Новосибирск: НГТУ, 2005. - 508 с. (стр.246)], содержащий последовательно установленные вдоль продольной оси внутренний полый цилиндрический электрод, межэлектродную вставку с центральным отверстием, три камеры подачи рабочего газа и выходной полый электрод.

Практика использования такого плазмотрона при нагреве воздуха показала, что основным элементом, лимитирующим ресурс его работы, является внутренний трубчатый электрод. При отводе части рабочего газа из полости внутреннего электрода его ресурс возрастает, так как частичный отвод газа позволяет увеличить расход газа, подаваемого через кольца закрутки в электрод. В результате окружная компонента скорости газа в полости электрода возрастает, скорость перемещения опорного пятна дуги также увеличивается, а величина удельной эрозии материала электрода снижается, соответственно ресурс работы внутреннего электрода и в целом плазмотрона повышается. Но возможность увеличения расхода газа и его отвода ограничена, так как при этом увеличивается вероятность шунтирования дуги на межэлектродную вставку, что приводит к ее быстрому разрушению и выходу плазмотрона из строя.

Задачей изобретения является увеличение ресурса работы электродугового нагревателя газа.

С целью увеличения ресурса работы электродугового нагревателя газа, содержащего последовательно установленные вдоль продольной оси внутренний полый цилиндрический электрод, межэлектродную вставку с центральным отверстием, три камеры подачи рабочего газа и выходной полый цилиндрический электрод, в задней крышке нагревателя выполнены осевые отверстия и в межэлектродной вставке выполнены тангенциальные отверстия для отвода газа, равномерно расположенные по окружности, диаметр которой составляет 0,75-0,8 диаметра внутреннего электрода dэ.

Применение дополнительного отвода газа через отверстия в крышке нагревателя и через тангенциальные отверстия в межэлектродной вставке снижает вероятность шунтирования дуги на межэлектродную вставку и позволяет существенно увеличить расход газа G1+G2 и повысить окружную компоненту скорости его вращения, а также увеличить диаметр электрода dэ и допустимую массу его износа. В результате этого значительно повышается ресурс работы электродугового нагревателя, допустимая токовая нагрузка на внутренний 2 и выходной 4 электроды и мощность нагревателя. Кроме того, основная масса продуктов эрозии внутреннего электрода (Сu, CuO, СuО2) выносится вместе с отводимым газом из его полости, что имеет существенное значение при проведении аэродинамических экспериментов или в технологических процессах с минимальным загрязнением целевого продукта.

На чертеже, фиг.1, показана упрощенная схема предложенного электродугового нагревателя.

Электродуговой нагреватель газа включает последовательно установленные вдоль продольной оси внутренний полый цилиндрический электрод 2, межэлектродную вставку с центральным отверстием 3, три камеры подачи рабочего газа G1, G2, G3 и выходной полый цилиндрический электрод 4. В нагревателе в задней крышке 1 выполнены осевые отверстия, равномерно расположенные по окружности, диаметр d которой составляет 0,75-0,8 диаметра dэ внутреннего полого цилиндрического электрода 2. В межэлектродной вставке 3 выполнены тангенциальные отверстия, равномерно расположенные по окружности, диаметр d которой составляет 0,75-0,8 диаметра dэ внутреннего полого цилиндрического электрода 2. Количество и диаметр отверстий определяются величиной расхода газа.

Газ, образующий плазму, вводится через каналы камеры подачи рабочего газа G1, G2, G3. Газовый вихрь обдувает столб дуги и истекает в виде плазменной струи. В условиях отвода части газа из полости внутреннего электрода через отверстия межэлектродной вставки и крышки на разогретый объем газа, выброшенный из приосевой зоны, воздействует архимедова сила, направленная к центру внутреннего электрода. На периферии стабилизирующее влияние даже возрастает. В результате этого высокотемпературные потоки газа не достигают поверхности внутреннего электрода и явление крупномасштабного шунтирования дуги в осевом направлении исчезает. Путем разделения межэлектродной вставкой внутреннего и выходного электродов достигается эффект гашения турбулентности и ламиниризации потока газа, поступающего из полости внутреннего электрода через диафрагму, за счет интенсивной крутки основного расхода рабочего газа. Это приводит к существенному увеличению напряжения на дуге и устойчивости ее горения.

Пример.

На аэродинамическом стенде работает экспериментальный образец трехкамерного плазмотрона. При организации отвода части плазмообразующего газа через отверстия в межэлектродной вставке обеспечивается надежная работа плазмотрона. Расход воздуха G1+G2 составляет 150 нм3/ч при токе дуги 700-1000 А. При этом скорость перемещения дугового пятна составляет 15-20 м/с для достижения удельной эрозии медного полого катода на уровне 2·10-9 кг/Кл. Часть расхода газа сбрасывалась в атмосферу с помощью регулируемого вентиля.

Организация дополнительного отвода газа через осевые отверстия в задней крышке плазмотрона (суммарный сброс газа составляет половину рабочего расхода) привела к существенному, примерно в два раза, снижению удельной эрозии и повышению ресурса работы электрода при одинаковых параметрах по току дуги и расходу газа в случае отвода газа только через отверстия во вставке.

Похожие патенты RU2454044C2

название год авторы номер документа
ВЫСОКОРЕСУРСНЫЙ ЭЛЕКТРОДУГОВОЙ ГЕНЕРАТОР НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЫ С ЗАЩИТНЫМ НАНОСТРУКТУРИРОВАННЫМ УГЛЕРОДНЫМ ПОКРЫТИЕМ ЭЛЕКТРОДОВ 2013
  • Карпенко Евгений Иванович
  • Карпенко Юрий Евгеньевич
  • Мессерле Владимир Ефремович
  • Мухаева Дина Васильевна
  • Устименко Александр Бориславович
RU2541349C1
ЭЛЕКТРОДУГОВОЙ ПЛАЗМОТРОН ПОСТОЯННОГО ТОКА ДЛЯ УСТАНОВОК ПЛАЗМЕННОЙ ПЕРЕРАБОТКИ ОТХОДОВ 2014
  • Вощинин Сергей Александрович
  • Переславцев Александр Васильевич
  • Тресвятский Сергей Сергеевич
  • Кудринский Алексей Александрович
RU2575202C1
СПОСОБ УПРАВЛЕНИЯ ПЕРЕМЕЩЕНИЕМ ПЯТНА ДУГИ ПО ВНУТРЕННЕЙ ПОВЕРХНОСТИ ЦИЛИНДРИЧЕСКОГО ЭЛЕКТРОДА ЭЛЕКТРОДУГОВОГО ПЛАЗМОТРОНА 1988
  • Михайлов Б.И.
  • Иохимович Я.Б.
  • Балудин А.В.
SU1641179A1
ЭЛЕКТРОДУГОВОЙ ПЛАЗМОТРОН ПОСТОЯННОГО ТОКА ДЛЯ УСТАНОВОК ПО ПЛАЗМЕННОЙ ПЕРЕРАБОТКЕ ТВЕРДЫХ ОТХОДОВ 2009
  • Вощинин Сергей Александрович
  • Переславцев Александр Васильевич
  • Тресвятский Сергей Сергеевич
RU2392781C1
ЭЛЕКТРОДУГОВОЙ ПЛАЗМОТРОН С ПАРОВИХРЕВОЙ СТАБИЛИЗАЦИЕЙ ДУГИ 2010
  • Михайлов Борис Иванович
  • Поздняков Борис Алексеевич
  • Трушников Юрий Фёдорович
RU2441353C1
ЭЛЕКТРОДУГОВОЙ ПЛАЗМОТРОН ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ 1982
  • Аньшаков А.С.
  • Жуков М.Ф.
  • Тимошевский А.Н.
SU1042586A1
ЭЛЕКТРОДУГОВОЙ ПЛАЗМОТРОН 2016
  • Константинов Виктор Вениаминович
  • Константинов Андрей Викторович
  • Иванов Валерий Николаевич
  • Чупятов Николай Николаевич
  • Дьяков Валерий Вячеславович
  • Мальков Александр Алексеевич
RU2614533C1
УСТРОЙСТВО ДЛЯ ПЛАЗМЕННОЙ РЕЗКИ МЕТАЛЛА 1995
  • Рудяк Эмиль Маркович
  • Рудяк Евгений Эмильевич
RU2113331C1
ЭЛЕКТРОДУГОВОЙ ТРЕХФАЗНЫЙ ПЛАЗМОТРОН 2014
  • Свирчук Юрий Семенович
RU2578197C9
ЭЛЕКТРОДУГОВОЙ ПЛАЗМОТРОН ПЕРЕМЕННОГО ТОКА 2008
  • Голиков Андрей Николаевич
  • Свирчук Юрий Семенович
RU2374791C1

Реферат патента 2012 года ЭЛЕКТРОДУГОВОЙ НАГРЕВАТЕЛЬ ГАЗА

Изобретение относится к области электротехники, а именно к электродуговым нагревателям газа (плазмотронам), используемым для получения стационарных потоков плазмы различных газов, и может быть применено в химической, металлургической промышленности, а также в научных целях при проведении аэродинамических экспериментов. Электродуговой нагреватель газа содержит последовательно установленные вдоль продольной оси внутренний полый цилиндрический электрод, межэлектродную вставку с центральным отверстием и тангенциальными отверстиями, три камеры подачи рабочего газа и выходной полый цилиндрический электрод. В задней крышке электродугового нагревателя выполнены осевые отверстия, причем отверстия в задней крышке и в межэлектродной вставке равномерно расположены по окружности, диаметр которой составляет 0,75-0,8 диаметра внутреннего электрода. 1 ил.

Формула изобретения RU 2 454 044 C2

Электродуговой нагреватель газа, содержащий последовательно установленные вдоль продольной оси внутренний полый цилиндрический электрод, межэлектродную вставку с центральным отверстием, три камеры подачи рабочего газа и выходной полый цилиндрический электрод, отличающийся тем, что в задней крышке нагревателя выполнены осевые отверстия, а в межэлектродной вставке выполнены тангенциальные отверстия, причем отверстия в задней крышке и в межэлектродной вставке равномерно расположены по окружности, диаметр которой составляет 0,75-0,8 диаметра внутреннего электрода.

Документы, цитированные в отчете о поиске Патент 2012 года RU2454044C2

Чередниченко B.C
Плазменные электротехнические установки
- Новосибирск: НГТУ, 2005, с.246
ОСЯЗАТЕЛЬНЫЙ СПОСОБ ЧТЕНИЯ СЛЕПЫМИ ПЕЧАТНОГО ТЕКСТА И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО СПОСОБА 1948
  • Мюнстерлейдт С.Э.
SU79261A1
ЭЛЕКТРОДУГОВОЙ ПЛАЗМОТРОН ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ 1982
  • Аньшаков А.С.
  • Жуков М.Ф.
  • Тимошевский А.Н.
SU1042586A1
WO 96040981 A1, 15.02.1996
WO 2009057473 A1, 07.05.2009.

RU 2 454 044 C2

Авторы

Аньшаков Анатолий Степанович

Урбах Эрих Кондратьевич

Даты

2012-06-20Публикация

2010-05-05Подача