Способ получения углеродных наноматериалов
Известен способ получения углеродных наноматериалов, в котором дисперсный катализатор (чаще всего металлоксидный) приводят в контакт с газом, содержащим газообразное соединение углерода, например окись углерода, этилен, пропилен, ацетилен, метан, пропан, бутан, бутадиен, спирты, органические амины или другие углеродсодержащие вещества. В зависимости от природы соединения углерода и состава катализатора процесс проводят при температуре 600-1000°С в течение 2-120 мин, при этом получают углеродные наноматериалы (нановолокна, нанотрубки различной структуры). В состав газа, который контактирует с катализатором на стадии роста углеродного наноматериала, как правило, входят инертный газ (аргон или азот) и газообразное углеродсодержащее вещество. В некоторых вариантах осуществления рассматриваемого способа в газовую смесь добавляют также водород. В других вариантах применяют газообразное углеродсодержащее вещество без разбавления инертным газом или с добавкой водорода без инертного газа. Условия проведения этого процесса хорошо известны и описаны в многочисленных публикациях, например 1. Dupuis A.-C. The catalyst in the CCVD of carbon nanotubes - a review //Progress in Materials Science, 2005, vol.50, p.929-961.
2. Раков Э.Г. Нанотрубки и фуллерены: Учебное пособие. - М.: Университетская книга, Логос, 2006. - 376 с.
3. Ткачев А.Г., Золотухин И.В. Аппаратура и методы синтеза твердотельных наноструктур. М.: Издательство Машиностроение-1, 2007. - 316 с. - Раздел 6.2.
4. Мищенко С.В., Ткачев А.Г. Углеродные наноматериалы. Производство, свойства, применение. - М.: Машиностроение, 2008. - 320 с. - Раздел 2.2.
Недостатком этого способа в различных его вариантах является неоптимальное сочетание выхода и качества углеродного материала, в частности углеродных нанотрубок. При высокой концентрации углеродсодержащего вещества в газе, контактирующем с катализатором, как правило, получают высокий выход углеродного наноматериала, но качество продукта при этом недостаточное. Например, углеродные нанотрубки, полученные при высокой концентрации углеродсодержащего вещества в газе, как правило, содержат многочисленные дефекты (изломы, неоднородность внутреннего и внешнего диаметра, обрывы углеродных слоев). Снижение концентрации углеродсодержащего вещества в газе, контактирующем с катализатором, как правило, позволяет повысить качество углеродного наноматериала, а также получить технически более ценные одностенные и двустенные нанотрубки. Однако при этом резко падает выход целевого продукта.
Наиболее близким к заявляемому изобретению является способ, также описанный в различных вариантах в многочисленных публикациях, (Патент США №6413487, МПК D01F 09/12. 2002 г.) В этом способе контактирование дисперсного катализатора с газом проводят более чем в одну стадию при различном составе газа на каждой стадии, а в некоторых вариантах различные стадии проводят при разной температуре. Как правило, на первой стадии проводят контактирование дисперсного катализатора с газом, содержащим водород, для восстановления содержащихся в катализаторе оксидов переходных металлов до металлов. На второй стадии проводят контактирование восстановленного катализатора с газом, содержащим соединение углерода. При этом удается лучше контролировать выход и качество углеродного наноматериала.
Однако и этому способу присущи недостатки. Так, предварительное восстановление металлоксидного катализатора водородом при высокой температуре приводит к укрупнению частиц каталитически активных металлов, что снижает качество углеродного наноматериала, получаемого на последующей стадии. Если же стадию восстановления проводить при температуре, меньшей температуры роста углеродного наноматериала, как это делается в некоторых вариантах рассматриваемого способа, такое осуществление требует затрат энергии и времени на изменение температуры реактора, что оказывается неприемлемым при проведении процесса в промышленном масштабе, или же стадию предварительного восстановления приходится проводить в отдельном реакторе, что также увеличивает затраты и стоимость конечного углеродного наноматериала.
В основу заявляемого изобретения поставлена задача, путем изменения состава газа, контактирующего с катализатором на разных стадиях, и выбора оптимального состава газа и времени проведения стадий, устранить недостатки известного способа и его вариантов, а именно обеспечить получение качественных углеродных наноматериалов с высоким выходом.
Поставленная задача решается тем, что согласно способу получения углеродных наноматериалов, включающий загрузку в реактор дисперсного катализатора и подачу в реактор газа, содержащего газообразное соединение углерода, при температуре роста углеродного наноматериала, при этом в реактор подают газ в три стадии с различным составом газа, причем содержание газообразного соединения углерода в газе составляет (объемных %):
от 5 до 20% на первой стадии продолжительностью от 2 до 10 мин;
от 30 до 100% на второй стадии продолжительностью от 10 до 30 мин;
от 10 до 25% на второй стадии продолжительностью от 20 до 30 мин.
Благодаря проведению процесса в указанном режиме на первой стадии обеспечивается образование центров роста углеродного наноматериала оптимальной структуры. На второй стадии обеспечивается высокий выход углеродного наноматериала при сохранении структуры и качества. На третьей стадии обеспечивается доращивание углеродного наноматериала до максимального выхода, достижимого с применяемым катализатором, при сохранении качества материала и минимальном расходе углеродсодержащего газа.
Эффективность заявляемого способа иллюстрируется следующими данными. Применяли металлоксидный катализатор, представляющий собой смешанный оксид состава FеСо0,7Аl2,10О5,35, полученный стандартным методом пиролиза раствора кристаллогидратов нитратов металлов в водной лимонной кислоте. Для полного выжигания органических соединений катализатор выдерживали 2 ч при 600°С в муфельной печи на воздухе. Затем катализатор измельчали до размера частиц менее 0,1 мм. Навески катализатора (100 мг) помещали в горизонтальный реактор, представляющий собой кварцевую трубу диаметром 40 мм, находящуюся в горизонтальной трубчатой печи. Перед началом эксперимента и перед извлечением продукта реактор продували аргоном. В качестве газа-источника углерода применяли пропилен (99,95%). Выращивание углеродных нанотрубок проводили при 650°С из газовой смеси, содержащей аргон и пропилен. Скорость подачи аргона составляла 1 л/мин (Н.У.), скорость подачи пропилена варьировалась.
Эксперимент проводили в трехстадийном режиме согласно заявляемому изобретению, при этом скорости подачи газов составляли:
первая стадия 5 мин, аргон 1 л/мин, пропилен 0,1 л/мин (9,09 объемных % пропилена в смеси);
вторая стадия 20 мин, аргон 1 л/мин, пропилен 0,5 л/мин (33,3 объемных % пропилена в смеси);
третья стадия 25 мин, аргон 1 л/мин, пропилен 0,2 л/мин (16,66 объемных % пропилена в смеси).
В результате получили 3,60 г углеродного наноматериала, который представлял собой углеродные нанотрубки диаметром 10-15 нм.
В эксперименте сравнения выращивание углеродного наноматериала проводили в одну стадию при скорости подачи аргона 1 л/мин и пропилена 0,5 л/мин в течение 50 мин (время, равное суммарному времени трех стадий в предыдущем эксперименте). Получили 3,00 г углеродного наноматериала, в котором разброс диаметра нанотрубок был заметно больше (8-20 нм).
Таким образом, заявляемый способ позволяет улучшить качество и увеличить выход углеродного наноматериала.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ МЕТОДОМ ХИМИЧЕСКОГО ОСАЖДЕНИЯ ИЗ ГАЗОВОЙ ФАЗЫ | 2010 |
|
RU2434085C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК И РЕАКТОР ДЛЯ ИХ ПОЛУЧЕНИЯ | 2010 |
|
RU2493097C2 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ | 2010 |
|
RU2481889C2 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ | 2011 |
|
RU2490205C2 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2011 |
|
RU2489350C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОМОДИФИЦИРУЮЩЕЙ ДОБАВКИ СТРОИТЕЛЬНОГО НАЗНАЧЕНИЯ | 2015 |
|
RU2651720C2 |
МЕТАЛЛОКСИДНЫЙ КАТАЛИЗАТОР ДЛЯ ВЫРАЩИВАНИЯ ПУЧКОВ УГЛЕРОДНЫХ НАНОТРУБОК ИЗ ГАЗОВОЙ ФАЗЫ | 2010 |
|
RU2427423C1 |
СПОСОБ И РЕАКТОР ДЛЯ ПРОИЗВОДСТВА УГЛЕРОДНЫХ НАНОТРУБОК | 2006 |
|
RU2419585C2 |
СПОСОБ НЕПРЕРЫВНОГО ПОЛУЧЕНИЯ ГРАФЕНОВ | 2014 |
|
RU2556926C1 |
СПОСОБ СИНТЕЗА УГЛЕРОДНЫХ НАНОТРУБОК | 2009 |
|
RU2401798C1 |
Изобретение относится к нанотехнологии. В реактор загружают дисперсный катализатор и подают газ, содержащий газообразное соединение углерода при температуре роста углеродного наноматериала. Газ подают в три стадии, причем содержание газообразного соединения углерода в газе составляет (объемных %): от 5 до 20 на первой стадии продолжительностью от 2 до 10 мин; от 30 до 100 на второй стадии продолжительностью от 10 до 30 мин; от 10 до 25 на второй стадии продолжительностью от 20 до 30 мин. Улучшается качество и увеличивается выход углеродного наноматериала. Способ прост и экономичен.
Способ получения углеродных наноматериалов, включающий загрузку в реактор дисперсного катализатора и подачу в реактор газа, содержащего газообразное соединение углерода, при температуре роста углеродного наноматериала, отличающийся тем, что в реактор подают газ в три стадии с различным составом газа, причем содержание газообразного соединения углерода в газе составляет, об.%:
от 5 до 20% на первой стадии продолжительностью от 2 до 10 мин;
от 30 до 100% на второй стадии продолжительностью от 10 до 30 мин;
от 10 до 25% на второй стадии продолжительностью от 20 до 30 мин.
JIAQI HUANG et al | |||
Process Intensification by CO for High Quality Carbon Nanotube Forest Growth: Double-Walled Carbon Nanotube Convexity or Single-Waned Nanotube Bowls?, Nano Res., 2009, v.2, p.p.872-881 | |||
СТРУКТУРА ИЗ УГЛЕВОДОРОДНЫХ ВОЛОКОН | 2005 |
|
RU2354763C2 |
СУШИЛКА ДЛЯ СЫПУЧИХ И ВОЛОКНИСТЫХ МАТЕРИАЛОВ | 1991 |
|
RU2025643C1 |
US 6413487 В1, 02.07.2002 | |||
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор | 1923 |
|
SU2005A1 |
Колосоуборка | 1923 |
|
SU2009A1 |
Авторы
Даты
2012-07-10—Публикация
2010-07-02—Подача