Изобретение относится к области двигателестроения, преимущественно к системам подачи охлаждающего воздуха к подшипниковым опорам газотурбинного двигателя.
Известна конструкция газотурбинного двигателя (Иностранные авиационные двигатели. 2005 г. Справочник ЦИАМ, стр.294), содержащая входное устройство с закрепленным с ним электрическим генератором, опоры двигателя, система наддува которых включает питающие воздуховоды, сообщенные с бачками, в которых готовится масловоздушная смесь, идущая на смазку и охлаждение подшипников опор.
Недостатком такого устройства является использование нагретого за компрессором воздуха для охлаждения подшипников двигателя, что снижает надежность работы подшипников и, как следствие, самого двигателя.
Наиболее близкой к заявляемой является конструкция газотурбинного двигателя (патент РФ №73958, опубликован 10.06.2008 г.), содержащая диск турбины, снабженный цапфой, на которой установлена втулка с пазами, подшипник с наружным и внутренним кольцами, установленный на втулке и расположенный в корпусе, полый вал, сообщенный с атмосферой, воздухозаборник, соосный с ним и сообщенный с полостью вала, выходное устройство, содержащее полые стойки и центральное тело, которое через полые стойки сообщено с атмосферой.
В двигателе для охлаждения подшипников идет воздух набегающего потока, который по единому воздуховоду (полому валу) подходит к опорам двигателя. Однако после нагнетателя, установленного в полости вала перед опорами, температура воздуха повышается. Кроме того, воздух в корпусе подшипника турбины, меняя свое направление движения на 180 градусов, теряет давление из-за увеличенного гидравлического сопротивления. Выброс воздуха, прошедшего через подшипник и по пазам, выполненным во втулке со стороны цапфы, происходит в полость, расположенную между неподвижным дефлектором диска турбины и корпусом подшипника, затем нагретый воздух по каналам центрального тела и стоек выходного устройства вытекает в атмосферу. Такая система выброса имеет увеличенное гидравлическое сопротивление. Выполнение пазов во втулке со стороны цапфы снижает теплоотвод от подшипника. Все это приводит к ухудшению охлаждения подшипника и, как следствие, уменьшению надежности работы двигателя. Кроме того, наличие нагнетателя внутри вала увеличивает массу двигателя.
Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в повышении эффективности охлаждения подшипника опоры турбины и, как следствие, в увеличении надежности работы двигателя без увеличения его габаритов и массы.
Указанный технический результат достигается тем, что в газотурбинном двигателе, содержащем диск турбины, снабженный цапфой, на которой установлена втулка с пазами, подшипник с наружным и внутренним кольцами, установленный на втулке и расположенный в корпусе, полый вал, сообщенный с атмосферой, воздухозаборник, соосный с ним и сообщенный с полостью вала, выходное устройство, содержащее полые стойки и центральное тело, которое через полые стойки сообщено с атмосферой, в отличие от известного между корпусом подшипника и диском установлено подвижное уплотнение, образующее полость между диском и подшипником, в диске выполнены, по крайней мере, два отверстия, соединяющие полость между диском и подшипником с полостью вала, пазы выполнены на наружной поверхности втулки и образуют полости между втулкой и внутренним кольцом подшипника, соединенные каналами с полостью между диском и подшипником и полостью центрального тела.
Для снижения гидравлических потерь при подводе набегающего потока воздуха к подшипнику отверстия в диске могут быть расположены на уровне пазов втулки.
Для повышения эффективности охлаждения между корпусом подшипника и его наружным кольцом могут быть выполнены дополнительные каналы, соединяющие полость между диском и подшипником с полостью центрального тела.
Для подвода воздуха к наружному кольцу с минимальными потерями в диске турбины могут быть выполнены, по крайней мере, два отверстия на уровне расположения дополнительных каналов.
Для разграничения расходов воздуха, идущих на охлаждение внутреннего и наружного колец подшипника, втулка может быть установлена с упором в диск над его отверстиями, расположенными на уровне пазов втулки.
Для снижения подвода тепла от диска к проходящему через отверстия диска воздуху в отверстиях диска могут быть установлены втулки из материала, коэффициент теплопроводности которого меньше коэффициента теплопроводности материала диска.
Для увеличения надежности работы опоры турбины и соответственно двигателя в корпусе подшипника перед и за подшипником могут быть неподвижно установлены перегородки, образующие полости смазки между подшипником и перегородками.
Для уменьшения уноса смазочного материала из полостей смазки, по крайней мере, между одной из перегородок и втулкой может быть установлено подвижное уплотнение.
Изобретение поясняется чертежами, на которых изображены:
фиг.1 - общий вид газотурбинного двигателя;
фиг.2, 3, 4 - варианты подвода воздуха к опоре диска турбины для охлаждения подшипника.
Газотурбинный двигатель (фиг.1) содержит диск 1 турбины, снабженный цапфой 2, на которой установлена втулка 3 с пазами 4. На втулке установлен подшипник 5 с наружным 6 и внутренним 7 кольцами, расположенный в корпусе 8. Полый вал 9 сообщен с атмосферой, воздухозаборник 10, соосный с ним, сообщен с полостью 11 вала. Выходное устройство 12, содержит полые стойками 13 и центральное тело 14.
Между корпусом 8 подшипника и диском 1 установлено подвижное уплотнение 15, лабиринтное или щеточное, образующее полость 16 между диском 1 и подшипником 5. В диске турбины выполнены, по крайней мере, два отверстия 17, соединяющие полость 16 между диском и подшипником с полостью 11 вала. Пазы 4 втулки 3 выполнены на ее наружной поверхности (со стороны внутреннего кольца подшипника) и образуют полости между втулкой и внутренним кольцом подшипника, которые соединены каналами 18 с полостью 16 между диском и подшипником и каналами 19 с полостью 20 центрального тела 14. Полость 20 центрального тела сообщена с подшипником 5 и через полые стойки 13 выходного устройства 12 сообщена с атмосферой.
Отверстия 17 диска 1 могут быть выполнены на уровне расположения пазов 4 втулки 3, что позволяет подвести охлаждающий воздух с минимальными гидравлическими потерями к внутреннему кольцу 7 подшипника.
Для эффективного охлаждения наружного кольца 6 подшипника 5 между корпусом 8 подшипника и его наружным кольцом 6 могут быть выполнены дополнительные каналы охлаждения 21, соединяющие полость 16 между диском и подшипником с полостью 20 центрального тела. При этом в диске 1 турбины могут быть выполнены, по крайней мере, два отверстия 22 (фиг.2) на уровне расположения дополнительных каналов охлаждения 21.
В корпусе 8 подшипника перед и за подшипником 5 могут быть неподвижно установлены перегородки 23 при этом, по крайней мере, между одной из перегородок и втулкой 3 установлено подвижное уплотнение 24, например сальниковое или щелевое (фиг.2).
Втулка 3 (фиг.3) может быть установлена на цапфе 2 с упором в диск 1 над его отверстиями 17.
В отверстиях 17 и 22 (фиг.4) диска 1 могут быть установлены втулки 25 из материала с коэффициентом теплопроводности, меньшим, чем у материала диска.
Устройство работает следующим образом.
Набегающий поток воздуха через воздухозаборник 10 (фиг.1) поступает в полость 11 вала 9, затем через отверстия 17 в диске 1 попадает в полость 16 между диском и подшипником. Далее воздух по каналам охлаждения 18 поступает в полости между втулкой и внутренним кольцом подшипника. Охладив внутреннее кольцо подшипника, воздух через каналы 19 поступает в полость 20 центрального тела и затем через полые стойки 13 уходит в атмосферу.
Выполнение пазов 4 на поверхности втулки 3 со стороны подшипника 5 позволяет направить поток воздуха непосредственно к внутреннему кольцу 7 подшипника и улучшить его охлаждение, а установка подвижного уплотнения 15 между корпусом 8 подшипника и диском 1 снижает утечки воздуха вне подшипника.
Наличие (фиг.2) дополнительных каналов охлаждения 21 между корпусом 8 подшипника и его наружным кольцом 6 позволяет подвести часть воздуха из полости 16 между диском 1 и подшипником 5 к наружному кольцу подшипника и охладить его. Далее воздух поступает в полость 20 центрального тела и затем через полые стойки 13 уходит в атмосферу.
Разграничение расхода воздуха, идущего на охлаждение внутренней и наружной обойм подшипника, достигается при установке втулки 3 на цапфе 2 с упором в диск 1 над отверстиями 17 подвода воздуха к внутреннему кольцу 7 подшипника (фиг.3).
Уменьшение подвода тепла от диска турбины к воздуху, проходящему через отверстия 17 и 22, осуществляется установкой (фиг.4) в эти отверстия втулок 25 из материала с коэффициентом теплопроводности, меньшим, чем у материала диска.
Установка (фиг.2) в корпусе 8 перед и за подшипником перегородок 23 позволяет образовать полости смазки, а выполнение, по крайней мере, между одной из перегородок 23 и втулкой 3 подвижного уплотнения 24 позволяет уменьшить унос смазки из этих полостей при охлаждении опоры.
Изобретение позволяет повысить надежность работы двигателя за счет повышения эффективности охлаждения подшипника опоры турбины.
название | год | авторы | номер документа |
---|---|---|---|
МАЛОРАЗМЕРНЫЙ ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2015 |
|
RU2597322C1 |
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2008 |
|
RU2412365C2 |
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2011 |
|
RU2463464C1 |
Компрессор низкого давления газотурбинного двигателя авиационного типа (варианты) | 2016 |
|
RU2614708C1 |
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2002 |
|
RU2289028C2 |
Принципиальные схемы газотурбинного двигателя | 2023 |
|
RU2808879C1 |
Компрессор низкого давления газотурбинного двигателя авиационного типа (варианты) | 2016 |
|
RU2614709C1 |
Малоразмерная газотурбинная установка | 2024 |
|
RU2819326C1 |
Ротор турбины низкого давления (ТНД) газотурбинного двигателя (варианты), узел соединения вала ротора с диском ТНД, тракт воздушного охлаждения ротора ТНД и аппарат подачи воздуха на охлаждение лопаток ротора ТНД | 2018 |
|
RU2684355C1 |
ТУРБОКОМПРЕССОР | 1996 |
|
RU2117772C1 |
Изобретение относится к области двигателестроения, преимущественно к системам подачи охлаждающего воздуха к подшипниковым опорам газотурбинного двигателя. Технический результат заключается в повышении эффективности охлаждения подшипника опоры турбины и, как следствие, в увеличении надежности работы двигателя без увеличения его габаритов и массы. Технический результат достигается тем, что в газотурбинном двигателе, содержащем диск турбины, снабженный цапфой, на которой установлена втулка с пазами, подшипник с наружным и внутренним кольцами, установленный на втулке и расположенный в корпусе, полый вал, сообщенный с атмосферой, воздухозаборник, соосный с ним и сообщенный с полостью вала, выходное устройство, содержащее полые стойки и центральное тело, которое через полые стойки сообщено с атмосферой, между корпусом подшипника и диском установлено подвижное уплотнение, образующее полость между диском и подшипником, в диске выполнены, по крайней мере, два отверстия, соединяющие полость между диском и подшипником с полостью вала, пазы выполнены на наружной поверхности втулки и образуют полости между втулкой и внутренним кольцом подшипника, соединенные каналами с полостью между диском и подшипником и полостью центрального тела. 11 з.п. ф-лы, 4 ил.
1. Газотурбинный двигатель, содержащий диск турбины, снабженный цапфой, на которой установлена втулка с пазами, подшипник с наружным и внутренним кольцами, установленный на втулке и расположенный в корпусе, полый вал, сообщенный с атмосферой, воздухозаборник, соосный с ним и сообщенный с полостью вала, выходное устройство, содержащее полые стойки и центральное тело, которое через полые стойки сообщено с атмосферой, отличающийся тем, что между корпусом подшипника и диском установлено подвижное уплотнение, образующее полость между диском и подшипником, в диске выполнены, по крайней мере, два отверстия, соединяющие полость между диском и подшипником с полостью вала, пазы выполнены на наружной поверхности втулки и образуют полости между втулкой и внутренним кольцом подшипника, соединенные каналами с полостью между диском и подшипником и полостью центрального тела.
2. Газотурбинный двигатель по п.1, отличающийся тем, что отверстия в диске расположены на уровне пазов втулки.
3. Газотурбинный двигатель по п.1 или 2, отличающийся тем, что между корпусом подшипника и его наружным кольцом выполнены дополнительные каналы, соединяющие полость между диском и подшипником с полостью центрального тела.
4. Газотурбинный двигатель по п.3, отличающийся тем, что в диске турбины выполнены, по крайней мере, два отверстия на уровне расположения дополнительных каналов.
5. Газотурбинный двигатель по п.4, отличающийся тем, что втулка установлена с упором в диск над его отверстиями, расположенными на уровне пазов втулки.
6. Газотурбинный двигатель по п.1, или 2, или 4, отличающийся тем, что в отверстиях диска установлены втулки из материала, коэффициент теплопроводности которого меньше коэффициента теплопроводности материала диска.
7. Газотурбинный двигатель по п.1, отличающийся тем, что в корпусе подшипника перед и за подшипником неподвижно установлены перегородки, образующие полости смазки между подшипником и перегородками.
8. Газотурбинный двигатель по п.2, отличающийся тем, что в корпусе подшипника перед и за подшипником неподвижно установлены перегородки, образующие полости смазки между подшипником и перегородками.
9. Газотурбинный двигатель по п.4, отличающийся тем, что в корпусе подшипника перед и за подшипником неподвижно установлены перегородки, образующие полости смазки между подшипником и перегородками.
10. Газотурбинный двигатель по п.5, отличающийся тем, что в корпусе подшипника перед и за подшипником неподвижно установлены перегородки, образующие полости смазки между подшипником и перегородками.
11. Газотурбинный двигатель по п.6, отличающийся тем, что в корпусе подшипника перед и за подшипником неподвижно установлены перегородки, образующие полости смазки между подшипником и перегородками.
12. Газотурбинный двигатель по п.7, или 8, или 9, или 10, или 11, отличающийся тем, что, по крайней мере, между одной из перегородок и втулкой установлено подвижное уплотнение.
Способ статического регулирования параллельных электрических цепей с постоянными параметрами | 1947 |
|
SU73958A1 |
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 1996 |
|
RU2124644C1 |
УЗЕЛ КОЛЬЦЕОБРАЗНЫЙ ПОДШИПНИКОВОЙ ОПОРЫ (ВАРИАНТЫ) | 1995 |
|
RU2132474C1 |
ТУРБИННЫЙ ДВИГАТЕЛЬ | 1999 |
|
RU2225520C2 |
ОХЛАЖДАЕМАЯ ТУРБИНА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2005 |
|
RU2305786C2 |
Окуляр | 1980 |
|
SU1013895A1 |
US 20100068035 A1, 18.03.2010. |
Авторы
Даты
2012-07-10—Публикация
2011-03-11—Подача