КОРПУС СУДНА ТУННЕЛЬНОГО ТИПА Российский патент 2012 года по МПК B63B1/38 B63B1/00 B63B3/00 

Описание патента на изобретение RU2456196C1

Изобретение относится к области судостроения и касается конструирования обводов корпуса судна с газовыми днищевыми кавернами.

Известен корпус судна туннельного типа (патент RU №2302971, кл. В63В 1/00, В63В 1/40, 2007), содержащий надводный корпус и подводный корпус, имеющий днище с продольным подковообразным в поперечном сечении туннелем, простирающимся вдоль всего корпуса судна, и криволинейные борта ниже конструктивной ватерлинии, сходящиеся к носу, при этом продольный канал расположен ниже конструктивной ватерлинии, с профилем сечения подводного корпуса по конструктивной ватерлинии, имеющим максимальную ширину в районе кормы.

Как следует из описания к устройству-прототипу, для уменьшения волнового сопротивления при движении судна с относительно большими скоростями хода осуществляется снятие негативного перепада волнового давления на подводном корпусе путем выполнения в днище ниже конструктивной ватерлинии продольного туннеля подковообразной формы в поперечном сечении с образующими параллельными диаметральной плоскости судна. Предложенная форма подводного корпуса вплоть до конструктивной ватерлинии имеет геометрию с минимальным волновым сопротивлением, так как стенки туннеля в днище параллельны диаметральной плоскости судна, поэтому независимо от волнообразования (т.е. перепада уровня воды) проекция сил волнового давления в этой зоне на продольную ось равна нулю, а также угол заострения подводного корпуса в районе конструктивной ватерлинии имеет относительно малую величину и поэтому проекция сил волнового давления в этом районе на продольную ось подводного корпуса мала, так как эта величина пропорциональна синусу половины угла носового заострения корпуса.

Целью предлагаемого изобретения является увеличение скорости судна за счет уменьшения сопротивления трения воды при движении судна.

Цель достигается тем, что в корпусе судна туннельного типа, содержащем надводный корпус и подводный корпус, имеющий днище с продольным подковообразным в поперечном сечении туннелем, простирающимся вдоль всего корпуса судна, и криволинейные борта ниже конструктивной ватерлинии, сходящиеся к носу, при этом продольный туннель расположен ниже конструктивной ватерлинии, с профилем сечения подводного корпуса по конструктивной ватерлинии, имеющим максимальную ширину в районе кормы, согласно предлагаемому техническому решению продольный туннель в поперечном сечении имеет по меньшей мере один подковообразный клиновидный редан, выполненный эквидистантно стенкам туннеля, с острой кромкой и под углом к поверхности туннеля в сторону кормы, при этом каждый из реданов разнесены по длине туннеля.

Кроме того, каждый редан выполнен выдвижным из стенок туннеля.

Целесообразно к каждому редану подвести систему подачи воздуха или газа через выходные отверстия в зареданную область для формирования искусственных газовых каверн на всей поверхности стенок туннеля.

А также целесообразно в поперечных реданах выпускные отверстия выполнить в нижних частях по высоте реданов.

Предлагаемое изобретение поясняется чертежами, где:

фиг.1 - изометрическое изображение корпуса судна туннельного типа;

фиг.2 - продольный разрез корпуса;

фиг.3 - узел А на фиг.2;

фиг.4 - сечение А-А на фиг.2.

Корпус судна содержит надводный корпус 1 выше конструктивной ватерлинии 2 и подводный корпус 3 ниже конструктивной ватерлинии 2 (фиг.1). Надводный корпус 1 может быть любой формы в зависимости от назначения судна. Подводный корпус 3 имеет криволинейные борта 4, сходящиеся к носу, днище 5 с продольным туннелем 6. Продольный туннель 6 расположен ниже конструктивной ватерлинии 2 и выполнен подковообразной формы в поперечном сечении (фиг.4). Продольный туннель 6 в поперечном сечении имеет по меньшей мере один клиновидный редан 7. При этом каждый из реданов 7 разнесены по длине туннеля 6. Каждый редан 7 выполнен эквидистантно стенкам туннеля 6, с острой кормовой кромкой и под углом к поверхности стенок туннеля 6 в сторону кормы. Для устойчивого положения каждого редана 7 по отношению к стенке туннеля 6 укреплен ребрами 8. Каждый редан 7 может быть выполнен выдвижным из стенок туннеля 6, посредством выдвижных ребер 8, как показано на фиг.3. К каждому редану 7 может быть подведена система подачи воздуха или газа (не показана) через выходные отверстия 9 в зареданную область для формирования искусственных газовых каверн на всей поверхности стенок туннеля 6. Причем редан 7 прикрывает от внешнего потока воды выходные отверстия 9. Число и размеры выходных отверстий 9 в туннеле 6, через которые проводится сжатый воздух или газ, выбираются таким образом, чтобы обеспечить равномерное растекание воздуха или газа по поверхности туннеля 6. При этом выходные отверстия 9 желательно равномерно расположить по контуру первого носового редана 7, а в последующих реданах 7 эти выходные отверстия 9 расположить только в нижних частях по высоте подковообразных реданов 7.

При движении судна со стороны окружающей среды на подводный корпус 3 действует сопротивление воды. Одной из главных составляющих сопротивления воды при движении судна является поверхностное вязкостное сопротивление трения, связанное прямо пропорционально как с площадью смоченной поверхности подводного корпуса 3 и скоростью хода, так и с вязкостью и плотностью окружающей среды. Представленные обводы подводного корпуса 3 с преимуществами, полученными при снижении волнового сопротивления при движении судна с относительно большими скоростями, имеют повышенное сопротивление трения при всех скоростях хода из-за относительно большой площади смоченной поверхности подводного корпуса 3 по сравнению с равными по водоизмещению и главными размерениями аналогичного судна с традиционными обводами корпуса.

При движении с относительно большими скоростями хода суда подобного типа имеют дифферент на корму. Следовательно, носовая верхняя часть продольного туннеля 6 может выходить из воды. Окружающий воздух поступает и смешивается с водой в туннеле 6. Для создания естественной газовой каверны в этом районе туннеля 6 устанавливают, по меньшей мере, один поперечный редан с острой кромкой. Расстояние между реданами 7 целесообразно принимать равным длине каверны, которая прямо пропорциональна квадрату скорости потока воды в туннеле 6. Поэтому в зависимости от скорости судна возможен вариант одного носового поперечного редана 7, когда длина каверны соизмерима с длиной судна.

Следует отметить, что эффективный угол наклона зависит от скорости движения судна. Поэтому целесообразно редан 7 выполнить выдвижным из стенок туннеля 6 с возможностью регулировать угол наклона посредством ребер 8 в зависимости от эксплуатационных скоростей судна.

Также целесообразно установить систему подачи воздуха или газа через выпускные отверстия 9, которые повысят эффективность формирования устойчивой газовой каверны на всей поверхности стенок туннеля 6. Выходные отверстия 9 для подачи сжатого газа в каверны можно выполнить во внутренних полостях редана 7. Тогда выходные отверстия будут прикрыты от внешнего потока воды.

Кроме того, выпускные отверстия 9 можно подводить не к каждому редану 7, а только к некоторым из них. Каверны за реданами 7, у которых нет выходных отверстий 9, образуются за счет газа, уносимого потоком воды из каверн, созданных перед этими реданами 7. Также следует отметить, что газ, выходящий из выпускных отверстий 9, которые расположены в нижних частях по высоте подковообразного редана 7, будет стремиться к своду туннеля 6. Поэтому целесообразно для поддержания газовой каверны на всей поверхности туннеля 6 устанавливать выходные отверстия 9 в районе нижней части по высоте в подковообразных реданах 7. Такой вариант конструкции упрощает ее и снижает потери энергии на подачу сжатого газа.

В результате предложенный корпус судна туннельного типа за счет конструирования поперечных реданов 7 в продольном туннеле 6 и подачи сжатого воздуха или газа в зареданную область позволит повысить мореходные качества судна путем снижения сопротивления трения воды при движении судна на всех скоростях хода.

Похожие патенты RU2456196C1

название год авторы номер документа
КОРПУС СУДНА 2016
  • Тарадонов Владимир Станиславович
  • Патрушев Владимир Викторович
  • Рыльцов Николай Александрович
  • Смирнов Дмитрий Владимирович
  • Журавлев Алексей Валентинович
  • Баламутенко Владимир Анатольевич
RU2631089C1
КОРПУС СУДНА ТУННЕЛЬНО-СКЕГОВОГО ТИПА 2014
  • Тарадонов Владимир Станиславович
  • Шляхтенко Александр Васильевич
  • Патрушев Владимир Викторович
  • Смирнов Дмитрий Владимирович
  • Баламутенко Владимир Анатольевич
  • Сивачев Евгений Павлович
  • Журавлев Алексей Валентинович
  • Корнева Елена Леонардовна
  • Рыльцов Николай Александрович
RU2555255C1
Судно переднеприводное с поперечным реданом 2016
  • Ахмеров Олег Руманович
RU2611666C2
КОРПУС БЫСТРОХОДНОГО СУДНА 1999
  • Павлов Геннадий Алексеевич
  • Придатко Юрий Петрович
  • Эпель Михаил Леонидович
RU2153998C1
БЫСТРОХОДНОЕ СУДНО 2000
  • Рогожкин С.Я.
  • Иванушкин С.А.
  • Солодкий П.М.
  • Якименко И.В.
  • Чабан Т.Н.
RU2172271C1
КОРПУС ГЛИССИРУЮЩЕГО СУДНА 2005
  • Павлов Геннадий Алексеевич
RU2324618C2
Корпус судна туннельно-скегового типа 2015
  • Дядченко Николай Петрович
RU2610154C1
КОРМОВАЯ ОКОНЕЧНОСТЬ СУДНА ТУННЕЛЬНОГО ТИПА 2012
  • Тарадонов Владимир Станиславович
  • Шляхтенко Александр Васильевич
  • Патрушев Владимир Викторович
  • Оглоблин Юрий Федорович
  • Негашев Сергей Владимирович
  • Шумилов Алексей Иванович
  • Журавлев Алексей Валентинович
  • Рыльцов Николай Александрович
  • Смирнов Дмитрий Владимирович
RU2495781C1
КОРПУС СУДНА (ВАРИАНТЫ) 2005
  • Тарадонов Владимир Станиславович
  • Шляхтенко Александр Васильевич
  • Юхнин Владимир Евгеньевич
  • Киреев Валерий Николаевич
  • Бузаков Александр Сергеевич
  • Таратонов Юрий Николаевич
  • Хализев Олег Анатольевич
  • Челпанов Игорь Валентинович
  • Шумилов Алексей Иванович
  • Дубровенский Ефим Файвелевич
  • Журавлев Алексей Валентинович
  • Корнева Елена Леонардовна
  • Юрьев Андрей Юрьевич
  • Мещеряков Виктор Евгеньевич
  • Кравченко Валентин Леонидович
RU2302971C2
КОРПУС СУДНА ТУННЕЛЬНОГО ТИПА С ДЕМПФИРУЮЩИМИ ПЛАСТИНАМИ 2016
  • Тарадонов Владимир Станиславович
  • Патрушев Владимир Викторович
  • Рыльцов Николай Александрович
  • Смирнов Дмитрий Владимирович
  • Журавлев Алексей Валентинович
  • Баламутенко Владимир Анатольевич
RU2617876C1

Иллюстрации к изобретению RU 2 456 196 C1

Реферат патента 2012 года КОРПУС СУДНА ТУННЕЛЬНОГО ТИПА

Изобретение относится к области судостроения и касается конструирования обводов корпуса судна с газовыми днищевыми кавернами. Корпус судна туннельного типа имеет надводный корпус и подводный корпус с днищем, выполненным с продольным подковообразным в поперечном сечении туннелем, простирающимся вдоль всего корпуса судна. Криволинейные борта, находящиеся ниже конструктивной ватерлинии, сходятся к носу. Продольный туннель находится ниже конструктивной ватерлинии. Профиль сечения подводного корпуса по конструктивной ватерлинии имеет максимальную ширину в районе кормы. Продольный туннель в поперечном сечении имеет по меньшей мере один подковообразный клиновидный редан. Редан выполнен эквидистантно стенкам туннеля, с острой кромкой и под углом к поверхности туннеля в сторону кормы. Реданы разнесены по длине туннеля. Технический результат заключается в повышении мореходных качеств судна путем снижения сопротивления трения при движении судна на всех скоростях хода. 3 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 456 196 C1

1. Корпус судна туннельного типа, содержащий надводный корпус и подводный корпус, имеющий днище с продольным подковообразным в поперечном сечении туннелем, простирающимся вдоль всего корпуса судна, и криволинейные борта ниже конструктивной ватерлинии, сходящиеся к носу, при этом продольный туннель расположен ниже конструктивной ватерлинии с профилем сечения подводного корпуса по конструктивной ватерлинии, имеющим максимальную ширину в районе кормы, отличающийся тем, что продольный туннель в поперечном сечении имеет, по меньшей мере, один подковообразный клиновидный редан, выполненный эквидистантно стенкам туннеля, с острой кромкой и под углом к поверхности туннеля в сторону кормы, при этом реданы разнесены по длине туннеля.

2. Корпус судна туннельного типа по п.1, отличающийся тем, что каждый редан выполнен выдвижным из стенок туннеля.

3. Корпус судна туннельного типа по п.1, отличающийся тем, что к каждому редану подведена система подачи воздуха или газа через выходные отверстия в зареданную область для формирования искусственных газовых каверн на всей поверхности стенок туннеля.

4. Корпус судна туннельного типа по любому из пп.1-3, отличающийся тем, что в поперечных реданах выпускные отверстия выполнены в нижних частях по высоте реданов.

Документы, цитированные в отчете о поиске Патент 2012 года RU2456196C1

КОРПУС СУДНА (ВАРИАНТЫ) 2005
  • Тарадонов Владимир Станиславович
  • Шляхтенко Александр Васильевич
  • Юхнин Владимир Евгеньевич
  • Киреев Валерий Николаевич
  • Бузаков Александр Сергеевич
  • Таратонов Юрий Николаевич
  • Хализев Олег Анатольевич
  • Челпанов Игорь Валентинович
  • Шумилов Алексей Иванович
  • Дубровенский Ефим Файвелевич
  • Журавлев Алексей Валентинович
  • Корнева Елена Леонардовна
  • Юрьев Андрей Юрьевич
  • Мещеряков Виктор Евгеньевич
  • Кравченко Валентин Леонидович
RU2302971C2
US 6125781 А, 03.10.2000
US 4587918 А, 13.05.1986
СТАРТЕР ДЛЯ ПУСКА ДВИГАТЕЛЕЙ ВНУТРЕННЕГО ГОРЕНИЯ 1931
  • Гурвиц С.Б.
SU30926A1
СКОРОСТНОЕ СУДНО С ПОДВОДОМ ВОЗДУХА ПОД ДНИЩЕ 2003
  • Привалов Э.И.
  • Василевский И.М.
  • Айзен С.Н.
  • Данилов Г.А.
  • Платонов С.В.
  • Перельман Б.С.
RU2263602C2
БЫСТРОХОДНОЕ СУДНО 2000
  • Рогожкин С.Я.
  • Иванушкин С.А.
  • Солодкий П.М.
  • Якименко И.В.
  • Чабан Т.Н.
RU2172271C1

RU 2 456 196 C1

Авторы

Тарадонов Владимир Станиславович

Шляхтенко Александр Васильевич

Оглоблин Юрий Федорович

Шумилов Алексей Иванович

Киреев Валерий Николаевич

Рыльцов Николай Александрович

Негашев Сергей Владимирович

Журавлев Алексей Валентинович

Канарейкин Олег Николаевич

Хализев Олег Анатольевич

Даты

2012-07-20Публикация

2011-01-14Подача