Предлагаемое техническое решение относится к области ядерной энергетики, в том числе к очистке теплоносителя тяжеловодных реакторов от трития.
Известен способ удаления 3Не из тяжеловодного контура ядерного реактора (патент РФ №2322713), однако он неприменим для очистки от трития.
Известен единственный способ поддержания концентрации трития в тяжеловодном теплоносителе ядерных реакторов на допустимом уровне, заключающийся в отборе части теплоносителя - тяжелой воды - и возврате очищенного от трития теплоносителя в контур теплоносителя (Canada Enters the Nuclear Age. A Technical History Of Atomic Energy of Canada Limited. Издано по заказу AECL Мак-Гил Королевским университетским издательством, 1997 год, стр.80,286, 350).
Недостатком данного способа является то, что такие отборы проводятся периодически примерно один раз в год с остановкой реактора, отобранный теплоноситель доставляется к установке очистки от трития, вместо отобранного теплоносителя в контур теплоносителя заливается чистый теплоноситель, после чего производится запуск реактора. Для уменьшения объема отбираемого теплоносителя концентрация трития в контуре теплоносителя к моменту отбора доводят до предельно допустимой величины, что связано с высокой радиационной опасностью.
Техническим результатом, на которое направлено изобретение, является поддержание содержания трития в тяжеловодном теплоносителе ядерного реактора на низком уровне за счет непрерывного отвода образующегося трития с помощью предлагаемого технического решения, что позволит снизить радиационную опасность и увеличить срок непрерывной работы тяжеловодных реакторов.
Сущность предлагаемого технического решения заключается в том, что предложен способ очистки теплоносителя тяжеловодного реактора от трития, заключающийся в отборе части теплоносителя из контура реактора и возврате очищенного от трития теплоносителя в контур реактора, при этом отбор производят непрерывно, отобранный поток разделяют на две части, одну часть направляют в электролизер, где разлагают на водород и кислород, полученный водород направляют в колонку разделения изотопов, а кислород направляют в сжигатель, вторую часть теплоносителя испаряют и направляют полученный водяной пар в колонку разделения изотопов, где проводят разделение водорода по изотопному составу с выделением тяжелой компоненты, содержащей тритий, тяжелую компоненту отводят для дальнейшей переработки, а легкую компоненту водорода, состоящую из дейтерия с уменьшенным содержанием трития, направляют в сжигатель, где окисляют кислородом с образованием тяжелой воды, которую конденсируют после сжигателя и возвращают в контур реактора, а сконденсированную в колонке разделения изотопов вторую часть теплоносителя также возвращают в контур реактора.
Предлагаемое техническое решение позволяет за счет постоянного выведения образующегося в активной зоне реактора трития поддерживать концентрацию трития на низком уровне, что существенно уменьшает радиационную опасность теплоносителя в тяжеловодных реакторах.
Предлагаемое техническое решение поясняется схемой, представленной на фигуре, где 1 - отобранный поток теплоносителя из контура реактора, 2 - поток теплоносителя, направляемый в электролизер, 3 - электролизер, 4 - поток водорода, 5 - поток кислорода, 6 - испаритель, 7 - поток газообразного теплоносителя, 8 - колонка разделения изотопов, 9 - концентрат трития, 10 - блок разделения изотопов, 11 - поток водорода после удаления трития, 12 - сжигатель, 13 - поток возврата теплоносителя после очистки от трития, 14 - поток сконденсированного теплоносителя.
Способ осуществляется следующим образом.
Отобранный из контура реактора поток теплоносителя - тяжелой воды 1 разделяют на две части, одну часть 2 направляют в электролизер 3, где разлагают на водород 4 и кислород 5, полученный водород 4 направляют в колонку разделения изотопов 8, а кислород 5 направляют в сжигатель 12, вторую часть теплоносителя испаряют в испарителе 6 и направляют полученный газообразный теплоноситель 7 в колонку разделения изотопов 8, где проводят разделение водорода по изотопному составу с выделением тяжелой компоненты, содержащей тритий, тяжелую компоненту 9 отводят для дальнейшей переработки, а легкую компоненту водорода 11, состоящую из дейтерия с уменьшенным содержанием трития, направляют в сжигатель 12, где окисляют кислородом 5 с образованием очищенной от трития теплоносителя - тяжелой воды 13, которую конденсируют после сжигателя в конденсаторе (на фигуре не показан) и возвращают в контур реактора. В процессе разделения изотопов в колонке 8 газообразный теплоноситель 7 конденсируют и отводят в виде жидкости 14, которую также возвращают в контур реактора. Группа колонок разделения 8 объединены в блок разделения изотопов 10.
Таким образом, данное решение решает проблему очистки теплоносителя тяжеловодных реакторов без их остановки, что позволит снизить радиационную опасность и увеличить срок непрерывной работы тяжеловодных реакторов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ УДАЛЕНИЯ He ИЗ ТЯЖЕЛОВОДНОГО КОНТУРА ЯДЕРНОГО РЕАКТОРА | 2006 |
|
RU2322713C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ТРИТИЯ И ПРОТИЯ ИЗ ДЕЙТЕРИЙСОДЕРЖАЩЕЙ ВОДЫ | 1994 |
|
RU2060801C1 |
СПОСОБ РАЗДЕЛЕНИЯ ИЗОТОПОВ ВОДОРОДА | 1998 |
|
RU2148426C1 |
СПОСОБ И УСТАНОВКА ДЛЯ ИЗОТОПНОГО РАЗДЕЛЕНИЯ ВОДЫ С МОЛЕКУЛАМИ, СОДЕРЖАЩИМИ ТЯЖЕЛЫЕ ИЗОТОПЫ ВОДОРОДА | 2021 |
|
RU2775889C1 |
РЕКТИФИКАЦИОННАЯ УСТАНОВКА ДЛЯ РАЗДЕЛЕНИЯ ИЗОТОПОВ | 2020 |
|
RU2723844C1 |
Способ очистки вод, загрязненных тритием | 2018 |
|
RU2680507C1 |
СПОСОБ ОЧИСТКИ ВОДЫ ОТ ТРИТИЯ КАТАЛИТИЧЕСКИМ ИЗОТОПНЫМ ОБМЕНОМ МЕЖДУ ВОДОЙ И ВОДОРОДОМ | 2008 |
|
RU2380144C1 |
КАТАЛИЗАТОР ДЛЯ ВОДО-ВОДОРОДНОЙ РЕАКЦИИ ОБМЕНА, СПОСОБ ЕГО ПОЛУЧЕНИЯ И УСТРОЙСТВО ДЛЯ ВОДО-ВОДОРОДНОЙ РЕАКЦИИ ОБМЕНА | 2015 |
|
RU2666351C1 |
Способ выделения изотопов водорода из потока инертного газа | 1982 |
|
SU1440339A3 |
СПОСОБ ПОЛУЧЕНИЯ ГЕКСАФТОРИДА НИЗКООБОГАЩЕННОГО УРАНА ИЗ ОРУЖЕЙНОГО ВЫСОКООБОГАЩЕННОГО УРАНА | 2005 |
|
RU2292303C2 |
Изобретение относится к области ядерной энергетики, в частности к очистке теплоносителя тяжеловодных реакторов от трития. Техническим результатом является поддержание содержания трития в тяжеловодном теплоносителе ядерного реактора на низком уровне, что позволит снизить радиационную опасность и увеличить срок непрерывной работы тяжеловодных реакторов. Производят непрерывный отбор части теплоносителя из контура реактора и возврат очищенного от трития теплоносителя в контур реактора, при этом отобранный поток разделяют на две части. Одну часть направляют в электролизер, где разлагают на водород и кислород. Полученный водород направляют в колонку разделения изотопов, а кислород направляют в сжигатель. Вторую часть теплоносителя испаряют и направляют полученный водяной пар в колонку разделения изотопов, где проводят разделение водорода по изотопному составу с выделением тяжелой компоненты, содержащей тритий. Тяжелую компоненту отводят для дальнейшей переработки, а легкую компоненту водорода, состоящую из дейтерия с уменьшенным содержанием трития, направляют в сжигатель, где окисляют кислородом с образованием тяжелой воды, которую конденсируют после сжигателя и возвращают в контур реактора. Сконденсированную в колонке разделения изотопов вторую часть теплоносителя также возвращают в контур реактора. 1 ил.
Способ очистки теплоносителя тяжеловодного реактора от трития, заключающийся в отборе части теплоносителя из контура реактора и возврате очищенного от трития теплоносителя в контур реактора, отличающийся тем, что отбор производят непрерывно, отобранный поток разделяют на две части, одну часть направляют в электролизер, где разлагают на водород и кислород, полученный водород направляют в колонку разделения изотопов, а кислород направляют в сжигатель, вторую часть теплоносителя испаряют и направляют полученный водяной пар в колонку разделения изотопов, где проводят разделение водорода по изотопному составу с выделением тяжелой компоненты, содержащей тритий, тяжелую компоненту отводят для дальнейшей переработки, а легкую компоненту водорода, состоящую из дейтерия с уменьшенным содержанием трития, направляют в сжигатель, где окисляют кислородом с образованием тяжелой воды, которую конденсируют после сжигателя и возвращают в контур реактора, а сконденсированную в колонке разделения изотопов вторую часть теплоносителя также возвращают в контур реактора.
Алексеев И.А | |||
и др | |||
Оценка возможности использования различных методов разделения изотопов для создания установок изотопной очистки тяжеловодных контуров реакторов | |||
Разборный складной глобус | 1921 |
|
SU887A1 |
Васянина Т.В | |||
и др | |||
Отработка технологии детритизации тяжелой воды реактора ПИК методом каталитического изотопного обмена вода-водород и |
Авторы
Даты
2012-07-20—Публикация
2011-06-03—Подача