ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА ДЛЯ СНАБЖЕНИЯ ЭЛЕКТРИЧЕСКОЙ И ТЕПЛОВОЙ ЭНЕРГИЕЙ Российский патент 2012 года по МПК F02G5/04 F02B43/08 

Описание патента на изобретение RU2459098C2

Техническое решение относится к машиностроению. Оно касается стационарной энергетической установки, вырабатывающей электрическую и тепловую энергию для снабжения поселков, теплиц, сельскохозяйственных ферм электрической энергией и горячей водой, в частности для отопления, сушки молока, зерна, фруктов и иных продуктов.

Известны различные стационарные энергетические установки для выработки электрической и тепловой энергии, показанные в патентах РФ №№2200241, 2206777, выданных на изобретения, в патентах РФ №№11567, 50256, 56972, выданных на полезные модели, в охранных документах №№10010163, 10114062, опубликованных в ФРГ, №№592500, 1273785, опубликованных Европейским патентным ведомством (ЕПВ), в патентах №№2051240, 4164660, 4264826, 4911110, выданных в США, в заявке №3674790, опубликованной в Японии. Однако эти энергетические установки при их работе используют обычное углеводородное топливо нефтяного происхождения, при сгорании которого происходит значительное выделение с отработавшими газами вредных веществ, загрязняющих атмосферу. При этом существенно истощаются в природе запасы углеводородного сырья, то есть нефти.

Для уменьшения потребления углеводородного сырья и улучшения экологии созданы энергетические установки, показанные, например, в охранных документах №№10009892, 10106354, 10138181, опубликованных в ФРГ, №№1130242, 1281856, 1357277, опубликованных ЕПВ, которые используют биотопливо, в частности растительное масло, превращаемое в синтетический газ. Более близким аналогом является изображенная в патенте РФ №2046979, МПК F02G 5/00, система утилизации теплоты отработавших газов двигателя внутреннего сгорания на электростанции, содержащая термохимический реактор для получения из метанола синтез-газа путем регенерации теплоты отработавших газов, теплообменники для передачи тепловой энергии от отработавших газов и от синтез-газа воде горячего водоснабжения потребителей тепловой энергии. Однако в этой системе не используется тепловая энергия отработавших газов, покидающих термохимический реактор, и жидкости системы охлаждения двигателя, что снижает эффективность этой энергетической установки. Кроме того, в этой системе не производится очистка отработавших газов, из-за чего происходит загрязнение атмосферы вредными веществами, содержащимися в отработавших газах.

Задача - повышение эффективности энергетической установки, вырабатывающей из биотоплива электрическую и тепловую энергию, путем более полной утилизации вырабатываемой энергии и снижения токсичности отработавших газов.

Решение задачи повышения эффективности энергетической установки обеспечено тем, что энергетическая установка для снабжения потребителя электрической и тепловой энергией, содержащая двигатель внутреннего сгорания, электрический генератор, имеющий привод от двигателя, термохимический реактор для получения из биотоплива синтез-газа, обогреваемый отработавшими газами двигателя, теплообменники для охлаждения синтез-газа и отработавших газов двигателя водой системы горячего водоснабжения, систему питания двигателя синтез-газом, для более полной утилизации вырабатываемой энергии и снижения токсичности отработавших газов снабжена теплообменником передачи тепловой энергии от жидкости системы охлаждения двигателя воде системы горячего водоснабжения перед ее поступлением в теплообменник охлаждения синтез-газа, смесителем для примешивания синтез-газа к отработавшим газам двигателя, каталитическим нейтрализатором оксидов азота в отработавших газах двигателя, газовыми поворотными заслонками для регулирования потока отработавших газов через теплообменник их охлаждения водой системы горячего водоснабжения и через обводной трубопровод, в питающей гидролинии системы горячего водоснабжения расположен электронагреватель, подключенный к электрическому генератору, а с возвратной гидролинией соединена резервная гидролиния с расположенным в ней радиатором, перед которым установлен вентилятор.

При таком выполнении энергетической установки используется тепловая энергия и системы охлаждения двигателя, и его отработавших газов, тепловая энергия которых сначала используется для поддержания рабочей температуры термохимического реактора, осуществляющего конверсию биотоплива в синтез-газ, а затем она используется для нагревания воды системы горячего водоснабжения. При этом синтез-газ после его охлаждения в теплообменнике, передающем тепловую энергию от него воде системы водоснабжения, используется для питания двигателя и частично подается в отработавшие газы перед их поступлением в каталитический нейтрализатор, снижающий токсичность отработавших газов путем восстановления оксидов азота.

Заслонки регулирования потока отработавших газов через теплообменник их охлаждения водой системы горячего водоснабжения и через обводной трубопровод кинематически связаны между собой посредством рычагов и тяги для их поворота в противофазе.

На фигуре 1 изображена энергетическая установка для снабжения электрической и тепловой энергией, общий вид.

На фигуре 2 показана принципиальная схема энергетической установки.

Представленная на фигуре 1 стационарная энергетическая установка, вырабатывающая электрическую и тепловую энергию для снабжения ею поселков, теплиц, сельскохозяйственных ферм, содержит двигатель 1 внутреннего сгорания и электрический генератор 2, имеющий привод от двигателя 1. Двигатель и генератор установлены на металлической раме 3.

Энергетическая установка содержит теплообменник 4 (фигура 2) для передачи тепловой энергии воде системы горячего водоснабжения потребителя от жидкости системы охлаждения двигателя 1, циркулирующей в замкнутом гидравлическом контуре 5 через термостат 6 с помощью собственного насоса двигателя 1. Система горячего водоснабжения содержит насос 7, расположенный в возвратной гидролинии 8, расходомер 9 воды, подаваемой насосом 7, и расположенный в питающей гидролинии 10 водяной котел 11. В котле 11 расположен электрический нагреватель 12, подключенный электрической цепью к генератору 2. С возвратной гидролинией 8 через трехходовые клапаны 13 соединена резервная гидролиния 14, в которой расположен воздушный радиатор 15, обдуваемый при необходимости установленным перед ним вентилятором 16. Питающая гидролиния 10 на участке, расположенном после котла 11 с размещенным в нем нагревателем 12, соединена перепускной гидролинией 17 через трехходовые клапаны 18 с возвратной гидролинией 8 на ее участке, расположенном перед ответвлением от нее резервной гидролинии 14, в которой расположен радиатор 15.

Энергетическая установка содержит теплообменник 19 для охлаждения отработавших газов двигателя 1, поступающих от него по выпускным трубопроводам 20 и 21, путем передачи тепловой энергии от них воде системы горячего водоснабжения. Параллельно теплообменнику 19 к трубопроводу 21 подключен обводной трубопровод 22. В обводном трубопроводе 22 и в трубопроводе 21 перед теплообменником 19 установлены газовые поворотные заслонки 23 и 24, предназначенные для регулирования потока отработавших газов через теплообменник 19 при их охлаждении в нем перед поступлением в нейтрализатор 25 оксидов азота. Заслонки 23 и 24 кинематически связаны между собой посредством рычагов и тяги для их совместного поворота в противофазе, при котором во время открытия одной из заслонок другая заслонка закрывается.

Энергетическая установка снабжена термохимическим реактором 26 для получения из биотоплива синтез-газа. Реактор 26 расположен между выпускными трубопроводами 20 и 21 для его обогрева отработавшими газами двигателя перед их поступлением в теплообменник 19 их охлаждения водой системы горячего водоснабжения. С реактором 26 с выходом из него синтез-газа соединен трубопроводом 27 вход в теплообменник 28, предназначенный для охлаждения синтез-газа водой системы горячего водоснабжения, поступающей к теплообменнику 28 от теплообменника 4 по трубопроводу 29 и отводимой по трубопроводу 30 в теплообменник 19. С выходом теплообменника 28 посредством трубопровода 31 через регулятор 32 расхода синтез-газа соединена система питания двигателя охлажденным синтез-газом. Кроме того, с выходом теплообменника 28 посредством трубопровода 33 через регулятор 34 соединен установленный на выпускном трубопроводе 21 смеситель 35, предназначенный для примешивания синтез-газа к охлажденным отработавшим газам перед их поступлением в каталитический нейтрализатор 25 вредных веществ, а именно оксидов азота.

Энергетическая установка снабжена датчиками температуры отработавших газов двигателя в трубопроводе 20 перед их поступлением в термохимический реактор 26 и в трубопроводе 21 перед поступлением в каталитический нейтрализатор 25, датчиками температуры воды в питающей гидролинии 10 после электронагревателя 12 и в возвратной гидролинии 8 перед резервной гидролинией 14 и перед насосом 7, датчиками температуры синтез-газа на выходе из реактора 26, на входе в теплообменник 28 и на выходе из этого теплообменника. Все упомянутые датчики температуры подключены к электронному блоку 36 управления энергетической установкой, расположенному на крышке корпуса генератора 2. Рядом с генератором 2 установлен пульт 37 управления.

При работе энергоустановки происходит привод двигателем 1 электрического генератора 2, который производит электрическую энергию для нужд потребителя. При этом тепловая энергия, выделяющаяся при работе двигателя в системе его охлаждения и с отработавшими газами, используется для нагрева воды в системе горячего водоснабжения потребителя. Во время работы двигателя 1 форсункой подается биотопливо в термохимический реактор 26, нагреваемый отработавшими газами. В реакторе 26 в присутствии катализатора под действием высокой температуры из биотоплива образуется синтез-газ, содержащий молекулы водорода и оксида углерода. Из реактора 26 горячий синтез-газ, имеющий температуру 600…900°С, проходит по трубопроводу 27 в теплообменник 28, в котором он охлаждается водой, циркулирующей в системе горячего водоснабжения потребителя тепловой энергии. Из теплообменника 28 охлажденный синтез-газ через регулятор 32 по трубопроводу 31 поступает в систему питания двигателя 1 топливом. Часть синтез-газа через регулятор 34 по трубопроводу 33 проходит в смеситель 35. В смесителе 35 синтез-газ примешивается к отработавшим газам двигателя, охлажденным до температуры 200…400°C в теплообменнике 19 водой горячего водоснабжения потребителя. Смесь охлажденных отработавших газов и синтез-газа проходит в каталитический нейтрализатор 25, в котором происходит разложение оксидов азота, образующихся в цилиндрах двигателя при сгорании в них топлива.

При снабжении потребителя тепловой энергией используемая в качестве теплоносителя очищенная вода циркулирует в системе горячего водоснабжения с помощью насоса 7. От насоса 7 через расходомер 9 вода проходит сначала через теплообменник 4, в котором она нагревается горячей жидкостью, циркулирующей через термостат 6 в системе охлаждения двигателя 1. Затем вода проходит через теплообменник 28, в котором она нагревается теплом, получаемым от горячего синтез-газа. После этого вода проходит через теплообменник 19, в котором ей сообщается тепловая энергия отработавших газов при их охлаждении перед поступлением в нейтрализатор 25. От теплообменника 19 горячая вода при температуре порядка 90°C по питающей гидролинии 10 поступает к потребителю и возвращается от него по возвратной гидролинии 8 с температурой порядка 70°C.

Зимой при низкой температуре воздуха в случае большого расхода потребителем тепловой энергии на отопление помещений воду в питающей гидролинии 10 можно дополнительно нагревать электронагревателем 12, получающим электрическую энергию от генератора 2.

Летом при большой температуре воздуха, когда нет нужды в отоплении и поэтому очень мало расходуется горячей воды потребителем, для поддержания оптимального теплового режима работы двигателя вода из питающей гидролинии 10 через клапаны 18 по перепускной гидролинии 17 направляется в возвратную гидролинию 8 и затем в резервную гидролинию 14, где она охлаждается в радиаторе 15, обдуваемом вентилятором 16. Охлажденная вода затем проходит через теплообменник 4, охлаждая жидкость, циркулирующую в системе охлаждения двигателя.

Днем, когда не требуется искусственное освещение и поэтому электрический генератор производит мало электрической энергии, двигатель 1 имеет малую нагрузку, вследствие чего температура его отработавших газов не превышает 200…300°C и их охлаждать не нужно. В этом случае закрывают заслонкой 24 вход в теплообменник 19 и открывают заслонкой 23 проход отработавших газов по обводному трубопроводу 22, минуя теплообменник 19. Вечером при значительном потреблении электрической энергии нагрузка на двигатель со стороны генератора существенно возрастает и вследствие увеличения мощности двигателя увеличивается температура его отработавших газов. В этом случае для поддержания их температуры в нужном диапазоне для обеспечения эффективной и надежной работы нейтрализатора 25 приоткрывают заслонку 24 и прикрывают заслонку 23. Тогда горячие отработавшие газы после их прохода по трубопроводу 22 смешиваются с отработавшими газами, охлажденными в теплообменнике 19, и после этого при нужной температуре поступают в смеситель 35 и затем в нейтрализатор 25 оксидов азота.

В такой энергетической установке эффективно используется тепловая энергия системы охлаждения двигателя и его отработавших газов, тепловая энергия которых сначала используется для поддержания рабочей температуры термохимического реактора, осуществляющего конверсию биотоплива в синтез-газ, а затем для нагревания воды системы горячего водоснабжения. Причем синтез-газ после его охлаждения в теплообменнике, передающем тепловую энергию от него воде системы водоснабжения, используется для питания двигателя и частично подается в отработавшие газы перед их поступлением в каталитический нейтрализатор, снижающий токсичность отработавших газов путем восстановления оксидов азота.

Похожие патенты RU2459098C2

название год авторы номер документа
ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА ДЛЯ СНАБЖЕНИЯ ЭЛЕКТРИЧЕСКОЙ И ТЕПЛОВОЙ ЭНЕРГИЕЙ ХОЗЯЙСТВЕННЫХ И СОЦИАЛЬНЫХ ОБЪЕКТОВ 2010
  • Иванов Денис Алексеевич
  • Ипатов Алексей Алексеевич
  • Лежнев Лев Юрьевич
  • Папкин Борис Аркадьевич
  • Хрипач Николай Анатольевич
  • Шустров Федор Андреевич
RU2499154C2
ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРИЧЕСКОЙ И ТЕПЛОВОЙ ЭНЕРГИИ 2010
  • Ипатов Алексей Алексеевич
  • Иванов Денис Алексеевич
  • Лежнев Лев Юрьевич
  • Папкин Борис Аркадьевич
  • Хрипач Николай Анатольевич
  • Шустров Федор Андреевич
RU2499903C2
Способ получения электроэнергии из некондиционной (влажной) топливной биомассы и устройство для его осуществления 2016
  • Варочко Алексей Григорьевич
  • Забегаев Александр Иванович
  • Тихомиров Игорь Владимирович
RU2631456C1
КОГЕНЕРАЦИОННАЯ УСТАНОВКА 2021
  • Волкова Ания Дамировна
  • Марченко Александра Витальевна
RU2758020C1
Способ получения электроэнергии из некондиционной (влажной) топливной биомассы и устройство для его осуществления 2016
  • Варочко Алексей Григорьевич
  • Забегаев Александр Иванович
  • Тихомиров Игорь Владимирович
RU2631455C1
Способ получения электроэнергии из некондиционной (влажной) топливной биомассы и устройство для его осуществления 2016
  • Варочко Алексей Григорьевич
  • Забегаев Александр Иванович
  • Тихомиров Игорь Владимирович
RU2631459C1
Энергетическая установка замкнутого цикла с твердополимерными топливными элементами 2021
  • Сайданов Виктор Олегович
  • Савчук Николай Александрович
  • Ландграф Игорь Казимирович
  • Бут Константин Павлович
RU2774852C1
УСТАНОВКА АВТОНОМНОГО ТЕПЛОЭЛЕКТРОСНАБЖЕНИЯ 2007
  • Колмогорцев Виталий Анатольевич
  • Сисин Сергей Анатольевич
  • Тимербулатов Геннадий Николаевич
  • Котлов Анатолий Афанасьевич
  • Фрибус Владимир Владимирович
RU2347927C2
Способ автономной электрогенерации и устройство - малая твердотопливная электростанция для его осуществления 2020
  • Тихомиров Игорь Владимирович
  • Тихомирова Татьяна Семеновна
RU2737833C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОЭНЕРГИИ ИЗ ТВЕРДОГО ОРГАНИЧЕСКОГО ТОПЛИВА (ВАРИАНТЫ) 2003
  • Стребков Д.С.
  • Безруких П.П.
  • Ерхов М.В.
  • Порев И.А.
  • Чирков В.Г.
RU2253070C2

Иллюстрации к изобретению RU 2 459 098 C2

Реферат патента 2012 года ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА ДЛЯ СНАБЖЕНИЯ ЭЛЕКТРИЧЕСКОЙ И ТЕПЛОВОЙ ЭНЕРГИЕЙ

Энергетическая установка для снабжения электрической и тепловой энергией содержит двигатель внутреннего сгорания, электрический генератор, имеющий привод от двигателя, термохимический реактор для получения из биотоплива синтез-газа, обогреваемый отработавшими газами двигателя, теплообменники для охлаждения синтез-газа и отработавших газов двигателя водой системы горячего водоснабжения, систему питания двигателя синтез-газом. Установка снабжена теплообменником передачи тепловой энергии от жидкости системы охлаждения двигателя воде системы горячего водоснабжения перед ее поступлением в теплообменник охлаждения синтез-газа, смесителем для примешивания синтез-газа к отработавшим газам двигателя, каталитическим нейтрализатором оксидов азота в отработавших газах двигателя, газовыми поворотными заслонками для регулирования потока отработавших газов через теплообменник их охлаждения водой системы горячего водоснабжения и через обводной трубопровод. В питающей гидролинии системы горячего водоснабжения расположен электронагреватель, подключенный к электрическому генератору. С возвратной гидролинией соединена резервная гидролиния с расположенным в ней радиатором, перед которым установлен вентилятор. Достигается повышение эффективности энергетической установки путем более полной утилизации вырабатываемой энергии и снижения токсичности отработавших газов. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 459 098 C2

1. Энергетическая установка для снабжения электрической и тепловой энергией, содержащая двигатель внутреннего сгорания, электрический генератор, имеющий привод от двигателя, термохимический реактор для получения из биотоплива синтез-газа, обогреваемый отработавшими газами двигателя, теплообменники для охлаждения синтез-газа и отработавших газов двигателя водой системы горячего водоснабжения, систему питания двигателя синтез-газом, отличающаяся тем, что она снабжена теплообменником передачи тепловой энергии от жидкости системы охлаждения двигателя воде системы горячего водоснабжения перед ее поступлением в теплообменник охлаждения синтез-газа, смесителем для примешивания синтез-газа к отработавшим газам двигателя, каталитическим нейтрализатором оксидов азота в отработавших газах двигателя, газовыми поворотными заслонками для регулирования потока отработавших газов через теплообменник их охлаждения водой системы горячего водоснабжения и через обводной трубопровод, в питающей гидролинии системы горячего водоснабжения расположен электронагреватель, подключенный к электрическому генератору, а с возвратной гидролинией соединена резервная гидролиния с расположенным в ней радиатором, перед которым установлен вентилятор.

2. Энергетическая установка по п.1, отличающаяся тем, что заслонки регулирования потока отработавших газов через теплообменник их охлаждения водой системы горячего водоснабжения и через обводной трубопровод кинематически связаны между собой посредством рычагов и тяги для их поворота в противофазе.

Документы, цитированные в отчете о поиске Патент 2012 года RU2459098C2

УСТАНОВКА ДЛЯ АВТОНОМНОГО ТЕПЛОСНАБЖЕНИЯ 1991
  • Чемякин В.М.
  • Пирогов С.П.
  • Кузнецов А.С.
RU2007606C1
СПОСОБ РАБОТЫ КОМБИНИРОВАННОГО ДВИГАТЕЛЯ И ЕГО УСТРОЙСТВО С ДВУХФАЗНЫМ РАБОЧИМ ТЕЛОМ 2007
  • Акчурин Харас Исхакович
RU2370658C2
СИСТЕМА УТИЛИЗАЦИИ ТЕПЛОТЫ ОТРАБОТАВШИХ ГАЗОВ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 1992
  • Звонов Василий Алексеевич[Ua]
  • Черных Виктор Иванович[Ua]
  • Баранов Виталий Юрьевич[Ua]
  • Муза Игорь Анатольевич[Ua]
  • Ушакова Наталия Николаевна[Ua]
RU2046979C1
СПОСОБ РАБОТЫ И УСТРОЙСТВО КОМБИНИРОВАННОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ С ГАЗОПАРОВЫМ РАБОЧИМ ТЕЛОМ 2002
  • Клочай В.В.
  • Голубев П.А.
  • Миронычев М.А.
  • Акчурин Х.И.
RU2242628C2
Способ работы дизель-генераторной установки и дизель-генераторная установка 1989
  • Гулин Степан Дмитриевич
  • Зайончковский Валентин Николаевич
  • Заславский Ефим Григорьевич
  • Кравченко Сергей Александрович
  • Кривов Валентин Гаврилович
  • Орлов Александр Николаевич
  • Синатов Станислав Александрович
  • Шокотов Николай Константинович
  • Марченко Андрей Петрович
  • Фастовский Виктор Абрамович
SU1686211A1
ВЫПАРНОЙ АППАРАТ ТЫРТЫШНОГО 2004
  • Тыртышный В.М.
RU2257245C1
Ускоренный метод отбора головных погонов в ректификационных аппаратах системы Совалля 1940
  • Савинов И.Е.
SU73640A1

RU 2 459 098 C2

Авторы

Иванов Денис Алексеевич

Ипатов Алексей Алексеевич

Лежнев Лев Юрьевич

Папкин Борис Аркадьевич

Хрипач Николай Анатольевич

Шустров Федор Андреевич

Даты

2012-08-20Публикация

2010-05-26Подача