УЛЬТРАЗВУКОВОЙ СПОСОБ ИЗМЕРЕНИЯ УДЛИНЕНИЯ СТЕРЖНЕВОЙ АРМАТУРЫ ЖЕЛЕЗОБЕТОННОЙ КОНСТРУКЦИИ Российский патент 2012 года по МПК G01N29/07 

Описание патента на изобретение RU2459200C1

Изобретение относится к области неразрушающего контроля строительных железобетонных конструкций и основано на определении несущей способности конструкции на основе определения изменения удлинения несущей арматуры.

Известен способ измерения силы натяжения арматуры по величине ее удлинения, в котором для измерения длины арматуры применяются: линейки металлические измерительные по ГОСТ 427-75; рулетки металлические измерительные по ГОСТ 7502-69; штангенциркули по ГОСТ 166-73 (ГОСТ 22362-77 «Конструкции железобетонные. Методы измерения силы натяжения арматуры»). Недостатком данного способа является невозможность его осуществления на готовой железобетонной конструкции.

Известен способ контроля несущей способности предварительно-напряженного железобетонного покрытия или перекрытия по напряженно-деформируемому состоянию вантовой арматуры (RU 2319952, МПК G01N 27/04, 2006) путем пропуска по арматуре электрического тока и измерения электросопротивления, по изменению которого судят о напряженном состоянии арматуры, отличающийся тем, что каждый стержень вантовой арматуры предварительно тарируют по растягивающему напряжению и электросопротивлению, а в процессе возведения и эксплуатации здания в период нагружения покрытия или перекрытия по каждому напряженному стержню вантовой арматуры пропускают электрический ток низкой частоты и контролируют изменения электросопротивления стержня, по которому определяют напряженное состояние стержня, и по предельно допустимому напряжению в стержне судят о несущей способности покрытия или перекрытия.

Недостатками этого способа являются температурная зависимость электросопротивления, энергозатратность, технологическая сложность осуществления измерений, высокая погрешность проводимых измерений.

Известен также способ измерения усилия в рабочей стержневой арматуре железобетонного сооружения (RU 2389987, МПК G01L 1/00, 2006), включающий образование двух штраб вдоль арматурного стержня на расстоянии не менее длины анкеровки, установку на обнаженную арматуру одной из штраб датчиков деформации, измерение начального значения относительной продольной деформации арматуры, перерезание арматуры в другой штрабе, последовательное вскрытие бетонного слоя с обнажением арматуры между штрабами до образования единой штрабы и вторичное измерение значения относительной продольной деформации арматуры, вычисление по разности двух измеренных деформаций действовавшего в арматуре до ее перерезания усилия, установку преобразователя силы на место вырезанного отрезка обнаженного арматурного стержня и измерение текущих значений усилий в арматуре железобетонного сооружения.

Недостатками этого способа являются трудоемкость установки датчиков, а также то, что усилие измеряется только на участке арматуры.

Наиболее близких аналогов не обнаружено.

Техническим результатом изобретения является повышение точности измерения удлинения арматуры, снижение трудоемкости измерения, энергозатрат, а также возможность контроля удлинения арматурного стержня в готовой железобетонной конструкции.

Указанный технический результат достигается тем, что через стержень арматуры пропускают ультразвуковой сигнал, измеряют фазу сигнала на выходе из стержня при ненагруженном и нагруженном состояниях, а удлинение стержня определяют по формуле

,

где Δφ=φ21; φ1 - фаза сигнала на выходе стержня арматуры при ненагруженном состоянии; φ2 - фаза сигнала на выходе стержня арматуры при нагруженном состоянии; С - скорость прохождения ультразвука в арматуре; f - частота сигнала.

Сущность изобретения заключается в том, что при нагружении стержня арматуры изменяется его удлинение и, соответственно, время прохождения ультразвукового сигнала, а также фаза сигнала φ относительно его ненагруженного состояния (фиг.1), где обозначено: 1 - сигнал на выходе усилителя (фиг.2); 2 - сигнал, поступающий на фазометр через ненагруженный стержень арматуры; 3 - сигнал, поступающий на фазометр через нагруженный стержень арматуры; Δφ - разность фаз при прохождении сигнала через ненагруженный и нагруженный стержень арматуры.

Способ может быть реализован, например, с помощью устройства, структурная схема которого приведена на фиг.2, где обозначено: 4 - генератор сигналов, 5 - модулятор, 6 - схема формирования прямоугольных импульсов, 7 - усилитель, 8 - пьезоизлучатель, 9 - стержень арматуры, 10 - пьезоприемник, 11 - усилитель, 12 - фазометр, 13 - аттенюатор, 14 - железобетонная плита.

Назначение элементов ясно из их названия, элементы 4, 5, 7, 8, 10, 11, 12, 13, входящие в состав устройства, могут быть выполнены на основе радиотехнических приборов.

Способ осуществляется следующим образом.

Ультразвуковой сигнал, вырабатываемый генератором сигналов 4, подается на модулятор 5 и схему формирования прямоугольных импульсов 6. Схема формирования импульсов вырабатывает прямоугольные импульсы, синхронизированные по фронту синусоидального сигнала, которые поступают на модулятор. С модулятора усиленный усилителем 7 сигнал подается на пьезоизлучатель 8. Колебания, прошедшие по стержню арматуры 9 и задержанные на время, эквивалентное длине арматуры, преобразуемые в электрические сигналы пьезоприемником 10 и усиливаемые усилителем 11, поступают на фазометр 12. В качестве опорного для фазометра используется сигнал, ослабленный аттенюатором 13.

По показаниям фазометра определяют разность фаз Δφ нагруженного и ненагруженного образцов арматуры, которая используется для определения удлинения арматуры.

Похожие патенты RU2459200C1

название год авторы номер документа
СПОСОБ КОНТРОЛЯ НЕСУЩЕЙ СПОСОБНОСТИ ЖЕЛЕЗОБЕТОННОГО ПОКРЫТИЯ ИЛИ ПЕРЕКРЫТИЯ 2006
  • Королев Игорь Геннадьевич
RU2319952C2
СПОСОБ ИЗМЕРЕНИЯ УСИЛИЯ В РАБОЧЕЙ СТЕРЖНЕВОЙ АРМАТУРЕ ЖЕЛЕЗОБЕТОННОГО СООРУЖЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2001
  • Ахметкереев М.Х.
  • Брайцев В.В.
  • Гуляев Н.А.
  • Зиновьев Р.К.
  • Кузин А.Г.
  • Николаев В.Б.
  • Петрашень И.Р.
  • Салов В.Н.
RU2191990C1
СПОСОБ ИЗМЕРЕНИЯ УСИЛИЯ В РАБОЧЕЙ СТЕРЖНЕВОЙ АРМАТУРЕ ЖЕЛЕЗОБЕТОННОГО СООРУЖЕНИЯ 2009
  • Зиновьев Роман Константинович
  • Смирнов Дмитрий Владимирович
RU2389987C1
Способ измерения деформаций, напряжений и усилий в арматуре эксплуатируемых железобетонных конструкций 2019
  • Уткин Владимир Сергеевич
  • Соловьев Сергей Александрович
RU2721892C1
СПОСОБ ОПРЕДЕЛЕНИЯ ИЗГИБНОЙ И КРУТЯЩЕЙ СОСТАВЛЯЮЩИХ НАПРЯЖЕНИЙ В АРМАТУРНЫХ СТЕРЖНЯХ 2019
  • Рубин Олег Дмитриевич
  • Фролов Кирилл Евгеньевич
  • Лисичкин Сергей Евгеньевич
  • Антонов Антон Сергеевич
RU2704327C1
СПОСОБ ИЗМЕРЕНИЯ НАЧАЛЬНОГО НАПРЯЖЕНИЯ СОСТОЯНИЯ АРМАТУРЫ ЭКСПЛУАТИРУЕМОГО ЖЕЛЕЗОБЕТОННОГО СООРУЖЕНИЯ 1995
  • Николаев В.Б.
RU2099676C1
СПОСОБ ДИАГНОСТИКИ ЗАБОЛЕВАНИЙ ОПУХОЛЕВОГО ПРОИСХОЖДЕНИЯ ВНУТРЕННИХ ОРГАНОВ И СПОСОБ ПОЛУЧЕНИЯ КОНТРОЛЬНОГО ОБРАЗЦА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 1993
  • Клемин Виктор Александрович
RU2082318C1
ЭЛЕКТРОАКУСТИЧЕСКИЙ ТВЕРДОМЕР 1992
  • Брызгало В.Н.
  • Карташевич Р.С.
  • Тугенгольд А.К.
RU2042942C1
СПОСОБ ОПРЕДЕЛЕНИЯ АПОЛИПОПРОТЕИНА А1 И АПОЛИПОПРОТЕИНА В СЫВОРОТКИ КРОВИ 2013
  • Руденко Олег Владимирович
  • Клемин Виктор Александрович
  • Гурбатов Сергей Николаевич
RU2535142C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ ОШИБКИ НА БИТ ПО ПАРАЛЛЕЛЬНЫМ МНОГОЧАСТОТНЫМ ИНФОРМАЦИОННЫМ СИГНАЛАМ 2010
  • Егоров Владимир Викторович
  • Катанович Андрей Андреевич
  • Лобов Сергей Александрович
  • Мингалев Андрей Николаевич
  • Смаль Михаил Сергеевич
  • Тимофеев Александр Евгеньевич
  • Щеглова Елена Федоровна
RU2451407C1

Иллюстрации к изобретению RU 2 459 200 C1

Реферат патента 2012 года УЛЬТРАЗВУКОВОЙ СПОСОБ ИЗМЕРЕНИЯ УДЛИНЕНИЯ СТЕРЖНЕВОЙ АРМАТУРЫ ЖЕЛЕЗОБЕТОННОЙ КОНСТРУКЦИИ

Использование: для измерения удлинения стержневой арматуры железобетонной конструкции. Сущность заключается в том, что через стержень арматуры пропускают ультразвуковой сигнал, измеряют фазу сигнала на выходе из стержня при ненагруженном и нагруженном состояниях, а удлинение стержня определяют по формуле

где Δφ=φ21; φ1 - фаза сигнала на выходе из стержня арматуры при его ненагруженном состоянии; φ2 - фаза сигнала на выходе из стержня арматуры при его нагруженном состоянии; с - скорость прохождения ультразвука в арматуре; f - частота сигнала. Технический результат: повышение точности измерения удлинения арматуры, снижение энергозатрат, а также возможность контроля удлинения арматурного стержня в готовой железобетонной конструкции. 2 ил.

Формула изобретения RU 2 459 200 C1

Ультразвуковой способ измерения удлинения стержневой арматуры железобетонных конструкций, заключающийся в том, что через стержень арматуры пропускают ультразвуковой сигнал, измеряют фазу сигнала на выходе из стержня при ненагруженном и нагруженном состояниях, а удлинение стержня определяют по формуле

где Δφ=φ21; φ1 - фаза сигнала на выходе из стержня арматуры при его ненагруженном состоянии; φ2 - фаза сигнала на выходе из стержня арматуры при его нагруженном состоянии; с - скорость прохождения ультразвука в арматуре; f - частота сигнала.

Документы, цитированные в отчете о поиске Патент 2012 года RU2459200C1

СПОСОБ ИЗМЕРЕНИЯ УСИЛИЯ В РАБОЧЕЙ СТЕРЖНЕВОЙ АРМАТУРЕ ЖЕЛЕЗОБЕТОННОГО СООРУЖЕНИЯ 2009
  • Зиновьев Роман Константинович
  • Смирнов Дмитрий Владимирович
RU2389987C1
УЛЬТРАЗВУКОВОЙ СПОСОБ ИЗМЕРЕНИЯ ВНУТРЕННИХ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ 1992
  • Власов В.Т.
  • Марин Б.Н.
  • Юрчук Е.С.
  • Коровкин Ю.А.
RU2018815C1
Устройство для измерения степени износа образца при его испытании на износ и трение 1960
  • Трушин В.А.
SU131950A1
Устройство для измерения линейных перемещений 1985
  • Мизарене Вида Йоновна
  • Рагульскис Казимерас Миколович
  • Снитко Валентинас Юргевич
  • Потехинский Виктор Афанасьевич
SU1260680A1
US 5942688 A, 24.08.1999
JP 58135450 A, 12.08.1983.

RU 2 459 200 C1

Авторы

Тюнин Алексей Борисович

Волков Виталий Витальевич

Ляпич Евгений Николаевич

Скляров Александр Николаевич

Даты

2012-08-20Публикация

2011-03-03Подача