Предлагаемое изобретение относится к средствам принудительного газообмена в герметичных контейнерах и может быть использовано для автоматического регулирования процесса принудительной вентиляции в герметичных контейнерах.
Известно устройство автоматизированной системы управления степенью герметичности защитной оболочки на судах (патент РФ №02151383, МПК G01M 3/00, публ. 20.06.2000 г.), содержащее блок управления, сформированный по заранее заданному алгоритму, построенному на логической связи электрических параметров элементов автоматизированной системы, который включает источник электропитания, аналого-цифровой преобразователь информационных и силовых управляющих сигналов, датчики, регистрирующие параметры автоматизированной системы, средства коммутации информационных и силовых управляющих сигналов, электрически связанные с цифровым электронно-вычислительным устройством и подключенные к электроприводам регулируемых рабочих органов исполнительных устройств, составляющие систему исполнительных механизмов, собственно исполнительные устройства и электроприводы регулируемых рабочих органов группы исполнительных устройств, пневмомагистрали, соединяющие датчики с исполнительными механизмами и с объектом регулирования.
Недостатком известного устройства является отсутствие возможности регулирования принудительного газообмена в герметичном контейнере, в котором происходит каталитическое окисление водорода кислородом воздуха.
Задачей предлагаемого изобретения является разработка простого устройства для автоматического регулирования принудительного газообмена в герметичном контейнере, в котором происходит каталитическое окисление водорода кислородом воздуха.
Новый технический результат, обеспечиваемый при использовании предлагаемого устройства для принудительного газообмена в герметичном контейнере, заключается в упрощении устройства и минимизации габаритно-массовых характеристик, в обеспечении возможности управления газообмена его с внешней средой путем принудительной вентиляции герметичного контейнера, в котором происходит каталитическое окисление водорода кислородом воздуха, обеспечения регулируемого притока кислорода из воздуха в указанный контейнер с размещенными в нем источниками водорода и других газов, доступ к которому ограничен, в обеспечении восстановления работоспособности катализатора.
Указанные задача и технические результаты обеспечиваются тем, что устройство для принудительного газообмена в герметичном контейнере, содержащее блок управления, сформированный по заранее заданному алгоритму, построенному на логической связи электрических параметров элементов автоматизированной системы, который включает источник электропитания, аналого-цифровой преобразователь информационных и силовых управляющих сигналов в виде блока преобразования интерфейсов, датчики, регистрирующие параметры автоматизированной системы, средства коммутации информационных и силовых управляющих сигналов в виде блока ввода-вывода интерфейсов, электрически связанные с цифровым электронно-вычислительным устройством и подключенные к электроприводу регулируемого исполнительного устройства, собственно исполнительное устройство и электропривод регулируемого исполнительного устройства, пневмомагистраль, соединяющую исполнительный механизм с герметичным контейнером, согласно изобретению в качестве исполнительного устройства содержит электропневмоклапан, подключенный непосредственно к одному из двух выходов герметичного контейнера и связанных пневмомагистралью с дополнительно установленными фильтром и микронасосом на выходе из пневмомагистрали, сообщающимися с внешней средой, датчик кислорода и дополнительно микрокомпрессор установлены непосредственно на втором выходе герметичного контейнера, датчик кислорода, микронасос, микрокомпрессор и электропневмоклапан имеют прямые и обратные электрические связи с блоком управления по цепям управления и питания для управления изменением положения рабочего органа электропневмоклапана, алгоритм, по которому сформирован блок управления, построен на логической связи (линейной, полиноминальной, экспоненциальной) исходных показаний и результатов текущих измерений концентрации кислорода от промежутка времени, за который произойдет допустимый расход кислорода в герметичном контейнере.
Предлагаемое устройство поясняется следующим образом.
На фиг.1 представлен общий вид устройства для принудительного газообмена в герметичном контейнере (1), где 2 - датчик кислорода, 3 - микрокомпрессор, 4 - блок управления, содержащий: 5 - источник электропитания, 6 - блок ввода-вывода интерфейсов, 7 - блок преобразования интерфейсов; 8 - микронасос, 9 - пневмомагистраль, 10 - фильтр, 11 - электропневмоклапан.
Предлагаемое устройство предусмотрено для принудительного газообмена в герметичном контейнере, в котором имеется источник водорода и происходит каталитическое окисление водорода, поступающего из этого источника, кислородом воздуха.
Предлагаемое устройство работает следующим образом.
В начальный момент через блок управления автоматизированной системы производится опрос показаний датчика кислорода 2 на содержание кислорода в герметичном контейнере 1, который будет проводиться в режиме текущего времени. Датчик кислорода 2 задействуется от источника электропитания 5. При достижении критического значения концентрации кислорода подается управляющий сигнал из блока управления 4 на открытие электропневмоклапана 11 в пневмомагистрали 9, соединяющей герметичный контейнер 1 с фильтром 10. Затем включаются микрокомпрессор 3 и микронасос 8, в результате чего осуществляется принудительный газообмен герметичного контейнера с внешней средой.
Блок управления сформирован по заранее заданному алгоритму, построенному на логической связи электрических параметров элементов автоматизированной системы, а именно на связи (линейной, полиноминальной, экспоненциальной) исходных показаний, заложенных в алгоритм, с последующим определением путем интерполяции с помощью указанных зависимостей результатов текущих измерений концентрации кислорода от промежутка времени, за который произойдет допустимый расход кислорода в герметичном контейнере. При достижении крайних заданных значений расхода кислорода производится передача сформированного управляющего сигнала по интерфейсу на соответствующее открытие электроприводом электропневмоклапана в пневмомагистрали с фильтром для запуска кислорода из воздуха внешней среды в герметичный контейнер, компенсирующего расход кислорода, или закрытие электропневмоклапана в пневмомагистрали с фильтром по завершении процесса. Результаты этих измерений фиксируются в памяти блока управления, затем преобразуются в сигнал управления и передаются по интерфейсу на электропривод исполнительного устройства (электропривод электропневмоклапана) с возможностью доведения величины концентрации кислорода в герметичном контейнере до уровня номинальной (допустимой). Особенность блока управления в предлагаемом устройстве заключается в том, что входящие в него составные части (блок питания, блок ввода-выввода интерфейсов и блок преобразования интерфейсов) выполнены в виде единого блока, что значительно минимизирует его габаритно-массовые характеристики.
Номинальным (допустимым) значением показания датчика кислорода является значение Сo2=20,9 об.%; что соответствует содержанию кислорода в атмосфере воздуха.
Критическим (конечным) значением концентрации кислорода является значение Сo2=10,0 об.%; что является недопустимым для герметичного контейнера, в котором происходит каталитическое окисление водорода кислородом воздуха. Сигналы, соответствующие номинальным и критическим значениям концентраций кислорода, закладываются в блок памяти в составе блока 4 и поступают в блок 6.
Соответствующие этим значениям концентраций кислорода электрические сигналы (аналоговые сигналы) датчика кислорода поступают в блок ввода-вывода интерфейсов 6 и преобразуются в цифровой сигнал аналого-цифровым преобразователем из состава блока 4. Эти значения закладываются в блок памяти в составе блока 4 и поступают в блок 7, где преобразуются в вид, необходимый для передачи по последовательной или параллельной линии внешним потребителям (ПК или оператору автоматизированной системы). Периодичность опроса текущих показаний датчика кислорода определяется в блоке управления 4 на основе построения графических зависимостей, например линейных или иных, выявленных в процессе наблюдений за изменением текущих значений концентраций кислорода, аппроксимирующих и интерполирующих зависимостей, соединяющих точки, соответствующие исходным, текущим и критическим значениям концентраций кислорода.
Последующие изменения показаний датчика кислорода (Стекущее) в режиме текущего времени (с учетом истечения водорода из источников водорода и расхода кислорода на каталитическое окисление водорода в герметичном контейнере) будут приближаться к критическому значению.
Процесс измерения и передачи текущих сигналов будет производиться аналогично измерению исходных значений концентраций кислорода.
Все измеренные сигналы будут заложены в блок памяти в составе блока 4.
Количество текущих измерений концентраций кислорода в период времени между исходными (номинальными) и конечными (критическими) значениями составляет 3-5 точек, что ограничено емкостью источников питания 5 при длительной эксплуатации предлагаемой системы.
В блоке управления 4 при достижении текущих значений концентраций кислорода, равных номинальному значению, формируется сигнал управления на выключение микрокомпрессора и микронасоса, закрытие электропневмоклапана в пневмомагистрали, соединяющей герметичный контейнер с фильтром 10.
В этот момент завершается газообмен герметичного контейнера с внешней средой. Процесс принудительной вентиляции герметичного контейнера может повторяться неоднократно за период времени эксплуатации.
Предлагаемое устройство предназначено для управления быстротекущих принудительных газообменных процессов.
Таким образом, предлагаемое устройство обеспечивает надежное и гибкое регулирование принудительного газообмена в герметичном контейнере, в котором происходит каталитическое окисление водорода кислородом воздуха, поступающего в герметичный контейнер из окружающей среды, для обеспечения регулируемого притока кислорода из воздуха в контейнер с размещенными в нем источниками водорода, доступ к которому ограничен, восстановление работоспособности катализатора на основе палладия.
Возможность промышленной реализации предлагаемого изобретения подтверждается следующим примером.
Пример 1. Предлагаемое устройство опробовано на действующем макете, где в качестве функциональных составляющих использованы покупные готовые изделия блоки (модуль аналогового ввода типа NL-4RTD, блок питания типа DRA18-12, блок интерфейсов типа NL-232C, электропневмоклапан типа ЭК-48, датчик кислорода типа Оксик-15, фильтр-поглотитель типа АПДС14), микронасос и микрокомпрессор типа МР2-2Г-01.
В начальный момент времени герметичный контейнер заполнен азотом в качестве инертной среды, а содержание кислорода соответствует критическому значению, электропневмоклапан закрыт.Показания датчика 2, регистрирующего концентрацию кислорода, соответствует критическому значению. Блок управления 4 формирует сигнал на открытие электропневмоклапана 11 в пневмомагистрали 9, соединенной с фильтром 10, открывается электропневмоклапан 11. Включаются микронасос 8 и микрокомпрессор 3. В этот момент происходит принудительная вентиляция герметичного контейнера за счет газообмена с внешней средой. При этом концентрация кислорода в герметичном контейнере 1 достигает номинального значения (соответствующего его содержанию в воздухе). Это фиксируется датчиком кислорода 2. После завершения процесса газообмена блок управления 4 подает сигнал на закрытие электропневмоклапана 11 и выключение микрокомпрессора 3 и микронасоса 8. В условиях примера 1 принцип работы устройства, состоящего из традиционных блоков, ограничен только возможностью реализации процесса регулирования ситуации с изменением концентраций кислорода от критической до номинальной, тогда как предлагаемое устройство обладает большим диапазоном функционирования за счет реализации с ее помощью процесса регулирования ситуации с изменением концентраций кислорода от номинальной до критической и наоборот.
название | год | авторы | номер документа |
---|---|---|---|
АВТОМАТИЗИРОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ ДИНАМИКОЙ ПРИНУДИТЕЛЬНОЙ ВЕНТИЛЯЦИИ В ГЕРМЕТИЧНОМ КОНТЕЙНЕРЕ И СПОСОБ ЕЕ ЗАДЕЙСТВОВАНИЯ | 2011 |
|
RU2453895C1 |
УСТРОЙСТВО ДЛЯ ПОДДЕРЖАНИЯ СОСТАВА ВОЗДУШНОЙ СРЕДЫ В ГЕРМЕТИЧНОМ КОНТЕЙНЕРЕ | 2011 |
|
RU2465512C1 |
АВТОМАТИЗИРОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ ДИНАМИКОЙ ЕСТЕСТВЕННОЙ ВЕНТИЛЯЦИИ В ГЕРМЕТИЧНОМ КОНТЕЙНЕРЕ И СПОСОБ ЕЕ ЗАДЕЙСТВОВАНИЯ | 2011 |
|
RU2466373C1 |
Система управления скоростью движения транспортного средства | 1987 |
|
SU1537575A1 |
СПОСОБ АНАЛИЗА МНОГОКОМПОНЕНТНОЙ ГАЗОВОЙ СРЕДЫ ГЕРМЕТИЗИРОВАННЫХ КОНТЕЙНЕРОВ С ЭЛЕКТРОННЫМИ ПРИБОРАМИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2013 |
|
RU2528273C1 |
Автоматизированная система и способ управления пневматическим приводом вагонного замедлителя | 2020 |
|
RU2758581C1 |
Автоматизированная система и способ управления пневматическим приводом вагонного замедлителя | 2021 |
|
RU2779263C1 |
УСТРОЙСТВО ГАЗОВОГО КОНТРОЛЯ | 2023 |
|
RU2802163C1 |
Система и способ управления пневматическим приводом вагонного замедлителя | 2020 |
|
RU2750559C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ (ВАРИАНТЫ) | 2007 |
|
RU2343826C1 |
Изобретение относится к средствам для принудительного газообмена герметичных контейнеров с внешней средой и может быть использовано для автоматического регулирования процесса принудительной вентиляции герметичных контейнеров. Устройство содержит блок управления, сформированный по заранее заданному алгоритму, построенному на логической связи электрических параметров элементов автоматизированной системы, который включает источник электропитания, аналого-цифровой преобразователь информационных и силовых управляющих сигналов в виде блока преобразования интерфейсов, датчики, регистрирующие параметры автоматизированной системы, средства коммутации информационных и силовых управляющих сигналов в виде блока ввода-вывода интерфейсов, электрически связанные с цифровым электронно-вычислительным устройством и подключенные к электроприводу регулируемого исполнительного устройства, исполнительное устройство и электропривод регулируемого исполнительного устройства, пневмомагистраль, соединяющую исполнительный механизм с герметичным контейнером. В качестве исполнительного устройства устройство содержит электропневмоклапан, подключенный непосредственно к одному из двух выходов герметичного контейнера и связанный пневмомагистралью с дополнительно установленными фильтром и микронасосом на выходе из пневмомагистрали, сообщающимися с внешней средой. Датчик кислорода и дополнительно микрокомпрессор установлены непосредственно на втором выходе герметичного контейнера. Датчик кислорода, микронасос, микрокомпрессор и электропневмоклапан имеют прямые и обратные электрические связи с блоком управления по цепям управления и питания. Алгоритм, по которому сформирован блок управления, построен на логической связи исходных показаний и результатов текущих измерений концентрации кислорода от промежутка времени, за который произойдет допустимый расход кислорода в герметичном контейнере. Технический результат: упрощение устройства и минимизация габаритно-массовых характеристик. 1 ил.
Устройство для принудительного газообмена в герметичном контейнере, содержащее блок управления, сформированный по заранее заданному алгоритму, построенному на логической связи электрических параметров элементов автоматизированной системы, который включает источник электропитания, аналого-цифровой преобразователь информационных и силовых управляющих сигналов в виде блока преобразования интерфейсов, датчики, регистрирующие параметры автоматизированной системы, средства коммутации информационных и силовых управляющих сигналов в виде блока ввода-вывода интерфейсов, электрически связанные с цифровым электронно-вычислительным устройством и подключенные к электроприводу регулируемого исполнительного устройства, собственно исполнительное устройство и электропривод регулируемого исполнительного устройства, пневмомагистраль, соединяющую исполнительный механизм с герметичным контейнером, отличающееся тем, что в качестве исполнительного устройства содержит электропневмоклапан, подключенный непосредственно к одному из двух выходов герметичного контейнера и связанный пневмомагистралью с дополнительно установленными фильтром и микронасосом на выходе из пневмомагистрали, сообщающимися с внешней средой, датчик кислорода и дополнительно микрокомпрессор установлены непосредственно на втором выходе герметичного контейнера, датчик кислорода, микронасос, микрокомпрессор и электропневмоклапан имеют прямые и обратные электрические связи с блоком управления по цепям управления и питания для управления изменением положения рабочего органа электропневмоклапана, алгоритм, по которому сформирован блок управления, построен на логической связи (линейной, полиноминальной, экспоненциальной) исходных показаний и результатов текущих измерений концентрации кислорода от промежутка времени, за который произойдет допустимый расход кислорода в герметичном контейнере.
СПОСОБ ИНЕРТИЗАЦИИ ДЛЯ ПРЕДОТВРАЩЕНИЯ ПОЖАРОВ | 2005 |
|
RU2372954C2 |
СИСТЕМА КОНТРОЛЯ ГЕРМЕТИЧНОСТИ ЗАЩИТНОЙ ОБОЛОЧКИ СУДОВОЙ ЯЭУ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ | 1998 |
|
RU2151383C1 |
Газометрический способ измерения механического недожога топлива | 1991 |
|
SU1810724A1 |
СПОСОБ РЕГУЛИРОВАНИЯ ГАЗОВОЙ СРЕДЫ ПРИ ХРАНЕНИИ ПЛОДООВОЩНОЙ ПРОДУКЦИИ | 1995 |
|
RU2102860C1 |
Пломбировальные щипцы | 1923 |
|
SU2006A1 |
JP 4210067 A, 31.07.1992. |
Авторы
Даты
2012-10-27—Публикация
2011-04-21—Подача